Arxiu de la categoria ‘Científics creatius’

Elogi dels pendents

dimecres, 26/07/2017

Quan caminem o quan anem amb bicicleta, sabem molt bé què són els pendents perquè els notem. És un concepte ben clar i senzill. Mireu el tram que he marcat en groc, a la zona del mapa de la imatge dins la lupa. Si sabem l’escala del mapa, només hem de mesurar la distància entre dues corbes de nivell. Un pendent del 5% ens diu que la carretera (o la pista) puja cinc metres cada 100 metres de recorregut horitzontal en el mapa, i si el pendent és del 10%, és que cada cent metres en pugem 10. Però, per què 100 metres? Si el camí puja de manera regular, podem fer el càlcul cada cent (o dos-cents) metres i el resultat ja serà prou acurat. Però si és un camí de muntanya, el pendent és irregular i pot canviar metre a metre. En aquest cas, podem calcular el pendent local amb una barra de fusta d’un metre. La recolzem a terra per l’extrem més elevat i la mantenim horitzontal (per exemple, amb un nivell d’aigua). La distància de l’altre extrem al terra, en vertical i en centímetres, ens diu el pendent de la pista, perquè una pujada constant de 10 centímetres cada metre indica un pendent del 10%, el mateix que quan pugem 10 metres cada 100 metres (vegeu la nota al final). I què és millor? Mesurar pendents en un tram llarg, de cent metres o d’un quilòmetre, o mesurar pendents locals? Tot depèn del que vulguem saber, si el que ens cansarem a cada pas o el que pujarem al final. En tot cas, el problema del pendents locals és un tema apassionant, que va captivar a Grecs com Arquimedes i que va acabar sent resolt de manera meravellosa i elegant per Newton i Leibnitz. Quan us parlin de derivades, penseu en el pendent de les carreteres. Les derivades no són més que el pendent local a cada punt, calculat amb barres horitzontals cada cop més petites. Les paraules espanten una mica, però els conceptes no.

Imaginem ara que decidim sortir de la pista i continuar camp a través. Hem deixat el camí, unidimensional, i ara ens podem moure en qualsevol direcció. Tenim la llibertat d’anar al Nord o al Sud, a l’Est o a l’Oest. Però, quin és el pendent, quan som en un punt determinat de la muntanya? La resposta no és difícil: només cal pensar que, a mesura que tenim més llibertat, el concepte de “pendent” s’enriqueix. En 2D, en dues dimensions, en lloc de pendents tenim gradients. El gradient té direcció, a més del valor del pendent. Té la direcció del màxim pendent. Imagineu-vos a qualsevol lloc de la muntanya que veieu a la imatge. Mireu al vostre voltant. En algunes direccions, fa pujada; en d’altres, fa baixada. La direcció de màxima pujada és la direcció del gradient; el valor del pendent en aquesta direcció ens indica justament la magnitud o mòdul d’aquest gradient. El gradient ens dona informació local sobre la forma de la superfície de la muntanya amb diverses dades: ens diu quina és la direcció de màxima pujada i el valor del seu pendent, ens explica que la direcció contrària és la de màxima baixada, i ens mostra la direcció horitzontal de pendent zero, que és justament la seva perpendicular. Els esquiadors bé saben que, per aturar-se, cal situar els esquís en direcció perpendicular al gradient.

Ara bé, no només hi ha pendent a les carreteres i gradient d’alçada a les muntanyes. Hi ha gradient a qualsevol magnitud que no sigui constant. Podem parlar del gradient de temperatures a la superfície de la Terra o del mar, de gradient de la concentració de vegetació, però fins i tot podem parlar de gradients 3D quan som davant de magnituds que tenen valors diferents a cada punt de l’espai: la temperatura de l’aire, la concentració de diòxid de carboni, la humitat, la densitat de protons (ions d’hidrogen) per metre cúbic, la puresa de l’aire, la temperatura de cada punt de l’oceà. A l’espai o dins del mar, tot és igual llevat que ara els gradients són tridimensionals: a qualsevol punt a uns quants metres de fondària al mar, la direcció del gradient de temperatura ens diu quina és la direcció òptima que hem de prendre si volem anar a llocs més calents, i qualsevol direcció perpendicular a aquesta ens portarà a punts propers sense que notem cap canvi de temperatura. De la mateixa manera, el gradient de protons ens permet anar cap a zones de l’espai amb més i més concentració de protons i el de contaminació ens indica justament on no hem de dirigir-nos si volem aire pur.

Hi ha tota una teoria que darrerament va agafant pes, que diu que la vida es basa en gradients de protons. Heu sentit parlar d’en Luca? Segons el professor William Martin, de la Universitat Heinrich Heine de Düsseldorf, en Luca (“Last Universal Common Ancestor“), l’antecessor de tots els bacteris, animals i plantes, era ja a la Terra fa uns quatre mil milions d’anys, quan el nostre planeta només tenia 560 milions d’anys. Per a arribar a saber coses d’en Luca, l’equip de recerca d’en William Martin va analitzar tots els gens de microbis i bacteris que s’han anat codificant i arxivant al llarg dels darrers 20 anys i que es poden consultar a les bases de dades d’ADN. En total, van estudiar 6 milions de gens i els van poder organitzar en arbres genealògics evolutius (si per exemple trobem un gen humà que també el tenen els ratolins, això ens diu que nosaltres l’hem heretat dels mamífers inferiors). Van poder classificar els sis milions de gens en un gran arbre de famílies genètiques, i van veure que, de tots ells, només 355 gens complien els criteris per pertànyer probablement a Luca, aquest avantpassat conjunt de tots els bacteris i éssers vivents. La conclusió de l’equip d’en William Martin, polèmica però molt interessant, és que el més probable és que Luca fos un organisme que “vivia” en zones del fons marí amb emanacions gasoses riques en metalls, molt calentes per la interacció entre l’aigua de mar i el magma que sortia d’alguns llocs del fons oceànic. En un article publicat a la revista Nature Microbiology, expliquen que alguns d’aquests 355 gens permeten generar energia a partir de l’hidrogen, i que un d’ells és el que fabrica la girasa inversa, un enzim que actualment es troba només en microbis que viuen a temperatures extremadament altes. En un altre article, en Kevin Drum cita els treballs de l’equip d’en William Martin junt amb els del bioquímic Nick Lane, i explica que aquests organismes inicials com en Luca generaven energia tot aprofitant justament els gradients de concentració d’hidrogen, amb un metabolisme que es basava en l’intercanvi de protons a les membranes de les mitocòndries. Les membranes, perpendiculars al gradient, afavorien l’intercanvi en la direcció del màxim pendent per optimitzar l’energia vital. En Luca va sobreviure i segurament va iniciar tota la vida a la Terra perquè va poder treure profit dels gradients de protons a llocs del fons marí on justament aquests gradients eren molt elevats. No és la manera més eficient de produir energia, però era l’única font que hi havia, fa uns 4.000 milions d’anys. La vida va anar evolucionant per aprofitar-ho, i les cèl·lules actuals tenen els seus propis mecanismes interns basats en gradients de protons.

Però no només la vida. Els gradients són també el motor de les societats, que avancen i es mouen quan hi ha una forta coincidència d’interessos. En aquest cas, no obstant, tot plegat és molt més complicat perquè les motivacions i els interessos socials tenen infinitat de matisos i dimensions…

Els gradients són font de vida, i els gradients són un repte vital. Ens agrada pujar muntanyes, com als insectes que els agrada pujar parets. Sense pendents i gradients, tot seria inert i nosaltres no hi seriem. L’Univers crea vida perquè és ple de gradients. Gradients que mouen la vida, les societats i la democràcia, i que ens haurien de permetre posar una mica de seny per afrontar els reptes que l’espècie humana tindrà durant les properes dècades.

Per cert, en Noam Chomsky diu que les qüestions que ara és més important abordar són les amenaces veritablement existencials que afrontem: el canvi climàtic i el perill de guerra nuclear. I es queixa que la interferència del poder empresarial i les fortunes privades en les eleccions nord-americanes no es consideri un crim sino el funcionament normal de la democràcia.

———

NOTA: Amb la barra horitzontal, hem format un triangle rectangle en el que la barra és un dels catets i on el segment recte T que uneix el punt més alt del terreny (on la barra toca el terra) amb el peu de la línia vertical que podem imaginar sota l’altre extrem de la barra, és la hipotenusa. El segment T ens dona la direcció local de la recta tangent a la carretera o pista; observareu que la manera habitual que tenim de parlar de pendents, en percentatges, no és altra cosa que mesurar la tangent trigonomètrica de l’angle que forma T amb la horitzontal. Podríem també calcular l’arc tangent de la divisió entre la distància en vertical de l’extrem lliure al terra i la longitud de la barra, i llavors parlar de pendent en graus angulars.

Als carrers del nostres pobles i ciutats, és ben fàcil saber-ne el pendent a cada punt perquè l’ampit de les entrades a les cases i botigues ens fa de barra horitzontal. Només cal mirar quina és la l’alçada que hi ha entre l’ampit en els seus dos extrems i el terra del carrer, i després dividir la diferència entre aquestes dues alçades per l’ample de l’ampit.

Mentiders i xerraires

dijous, 20/07/2017

La revista National Geographic ha publicat un article amb diferents estudis científics sobre la nostre condició de mentiders i sobre la nostra relació, complexa, amb allò que és objectiu. Gràcies als experiments dels darrers anys, hem pogut saber que el fet de mentir és part del nostre desenvolupament, com caminar o parlar: els nens comencen a mentir entre els 2 i els 5 anys, quan el seu desenvolupament mental ja els ho permet. De fet, el fàcil és dir la veritat, però mentir requereix en canvi un bon grau d’agudesa i flexibilitat mental, segons explica el psicòleg Bruno Verschuere a l’article.

La imatge, que podeu trobar a la web de l’article, mostra els resultats d’un estudi sobre quantes mentides diem cada dia. Per cada franja d’edat podeu veure en gris el percentatge de persones que, de mitjana, en diuen entre una i cinc, i, en negre, el percentatge de les que en diuen més de 5 en mitjana. La gent gran no és lluny dels més petits (34% i 29% a la franja grisa), mentre que el pic més significatiu és entre els 13 i els 17 anys. En aquesta franja d’edat, les tres quartes parts dels joves menteixen una o més vegades cada dia. Sembla que quan estem configurant la nostra independència, mentim més. De fet, i segons l’estudi, mentim per causes molt i molt diferents. Ho fem per evitar estar amb gent amb qui no tenim ganes de parlar, per mostrar una imatge ideal de nosaltres mateixos, també per ajudar als altres o per fer-los riure, per tapar errors o coses que hem fet de mala fe, per guanyar més diners, per augmentar el nostre prestigi personal, per a ser ben educats, i per moltes més raons.

El professor Kang Lee, de la Universitat de Toronto, va preparar un experiment molt enginyós per estudiar les mentides dels més petits. Feia entrar un nen al despatx, li mostrava una capsa, i li deia que sentiria una música. Amb la seva tonada, hauria d’endevinar què hi havia a la capsa. Un cop endevinat (o no), repetirien el mateix dues o tres vegades més, amb altres capses i tonades. Les dues primeres eren molt fàcils: s’escoltava un gos bordant, i a la capsa hi havia un gos de peluix; el nen escoltava el so d’un gat miolant, i ràpidament encertava que el que hi havia a la capsa era un gat de peluix. Però el tercer experiment era una trampa, i la música no tenia cap relació amb el que hi havia a la capsa. Per exemple, uns compassos de Beethoven, i a la capsa hi havia un cotxe de joguina. En aquest cas, just després de sentir la musica, al professor li sonava el mòbil, i s’excusava, i sortia del despatx un minut. Això sí, abans de sortir li deia al nen: “pensa, però no miris dins la capsa, d’acord?”. En tornar, li feia dues preguntes: “què creus que hi ha a la capsa?” i “has mirat, o no?”. Val a dir que una càmera oculta havia enregistrat allò que el nen havia fet. Després de repetir l’experiment amb molts nens, el resultat va ser molt interessant: el 30% dels nens de dos anys va mentir, mentre que aquest percentatge va ser del 50% en el grup de nens de tres anys, i del 80% en els de 8 anys. Quasi tots els grans van negar allò que havien fet: havien obert la capsa.

Un altre experiment, fet per en Dan Ariely de la Universitat de Duke amb un grup d’adults, va consistir a demanar que resolguessin 20 problemes senzills. Se’ls deia que cobrarien una petita quantitat de diners per cada resposta encertada. Havien de resoldre els problemes en el mateix full dels enunciats; en acabar, se’ls mostraven les solucions correctes per a que corregissin ells mateixos les seves respostes. Després, se’ls demanava que llencessin el full a la paperera; quan sortien, només havien de recordar el nombre de respostes correctes i cobraven en base al que deien. El truc, en aquest cas, estava en què els fulls estaven marcats. Els experimentadors, al final, recollien tots els fulls i podien estudiar, en cada cas, el que havia dit la persona en relació al seu nombre real de respostes correctes. La mitjana de respostes correctes va ser de 4, mentre que la mitjana del que van afirmar en sortir va ser de 6. Ara bé, el més interessant va venir a la segona fase de l’experiment. El van repetir amb un grup diferent de persones triades a l’atzar, però incrementant la quantitat de diners que rebrien per cada resposta encertada, i el nivell de mentides no es va incrementar: 4 respostes correctes de mitjana, 6 respostes manifestades pels participants a la sortida. Alguna cosa ens para i no ens deixa mentir més. Mentim, però amb moderació. La hipòtesi de Dan Ariely és que l’honestedat és un fet cultural. Volem transmetre una imatge de persones honestes.

L’opinió de Tim Levine (Universitat d’Alabama a Birmingham) i d’en Robert Feldman (de la Universitat de Massachusetts), expressada a l’article, és que tot el coneixement que usem per moure’ns pel món es basa en pensar que el que veiem, llegim i escoltem, és cert. Molt del nostre coneixement ve del que ens diuen, i sense aquesta confiança implícita que tenim en la comunicació amb els altres, ens acabaríem malfiant de tothom i no podríem fer res. Si algú ens truca i ens diu que és del servei de correus, ens ho creiem. La gent no espera mentides, ni està pensant tota la estona que el que li diuen és fals. És interessant: tot funciona gràcies a que mantenim un nivell “raonablement baix” de mentides, un nivell que sabem tenir sota control.

Una altra cosa interessant és que ens agrada escoltar mentides que concorden amb les nostres conviccions. Escoltem bàsicament el que volem escoltar i, si ens diuen alguna cosa que no lliga amb els nostres esquemes mentals, tendim a ignorar-ho, ridiculitzar-ho, o fins i tot atacar-ho. Moltes vegades preferim no tenir-ho en compte, encara que siguin fets demostrats. Ho ha vist la Briony Swire-Thompson durant els seu treball de tesi doctoral a la Universitat de Perth a Austràlia. En un estudi fet amb uns dos mil ciutadans nord-americans, la majoria dels qui pensen que les vacunes causen autisme acaben acceptant que no és cert quan se’ls mostren proves científiques que constaten que aquesta relació de causalitat és falsa. Però al cap d’una setmana, si se’ls pregunta, tornen a manifestar que estan ben segurs que la relació és certa.

Som mentiders, però a més no podem deixar de parlar. En Ferran Requejo ho explica molt bé. Diu que som intrínsecament xerraires, i que constantment estem proposant ficcions a través de llenguatges que hem inventat i en els quals dipositem una confiança descriptiva digna de millor causa. Anem pel món embriagats de paraules. No captem més que una part molt petita de la realitat, i ho fem a la nostra manera. Això sí: com els borratxos, creiem que tenim una gran clarividència sobre el món que ens envolta i estem segurs que el captem fins i tot en els seus sofisticats matisos interiors. Però de fet, el que fem és xerrar i mentir-nos.

Per cert, la Najat el Hachmi parla d’alliberament, de “la veritat” i del que no ho és. Diu que quan escolta coses com “l’islam vertader”, se li posen els pèls de punta. I parla del perill que les dones reivindiquin els seus drets sense voler sortir dels límits de la religió. Perquè això, diu, és una trampa molt perillosa.

Escalfament, responsabilitat i poder

dimecres, 21/06/2017

Fa poc, l’Antoni Bassas comentava que el 69% dels barcelonins creuen que tindran cotxe d’aquí 10 anys i que el 81% creuen que el faran servir igual o més que ara. És curiós. L’aire de la ciutat és moltes vegades sota mínims pel que fa a contaminació, però nosaltres volem mantenir els nostres hàbits i seguir tenint cotxe. Espero i desitjo que, amb la nostra curtesa de vista, no ens passi com les granotes a l’olla d’aigua calenta.

La setmana passada vaig ser a un congrés de visualització. Aquest és un camp que estudia com presentar la informació i les dades, amb tècniques informàtiques, de manera que les persones puguin entendre-les, analitzar-les i treure’n el màxim de profit. Un dels conferenciants va mostrar, com a proposta interessant, un còmic-web d’en Randall Patrick Munroe sobre l’escalfament global del planeta. En Randall Patrick Munroe, nascut el 1984, és físic. Va treballar a la NASA, però ara fa 11 anys no va voler renovar el contracte i es va voler dedicar a temps complet a la creació de còmics sobre matemàtica, ciència i vida.

El còmic-web d’en Randall Patrick Munroe sobre l’escalfament global el podeu veure aquí (també el teniu en vídeo). És una imatge, llarga, que si voleu us podeu descarregar. Però el que us aconsello és que la mireu directament a la web, amb el vostre navegador, desplaçant-vos amunt i avall amb el ratolí o la pantalla tàctil. La imatge que veieu aquí al costat és un collage que inclou tot el còmic (estret i llarg) a l’esquerra i tres trossets, ampliats, a la dreta. Les dades provenen del comitè IPCC de la ONU i de diferents treballs científics de Shakun, Marcott, Annan, Hargreaves i altres (2012 i 2013). És una cronologia del nostre planeta des de fa 22 mil anys fins ara que mostra els principals esdeveniments històrics i la temperatura mitjana de la superfície del planeta, estimada amb els mitjans científics que tenim avui. Després de l’edat de gel, la temperatura es va estabilitzar en valors similars als dels segles XIX i XX ara fa uns onze mil anys (cap a l’any 9000 abans de Crist), poc després de l’inici de l’agricultura neolítica. Podem anar pujant i baixant i anirem veient l’evolució de la temperatura. Però la sorpresa ve quan som a baix de tot i veiem el que ha passat des de 1980: la única pujada anòmala dels darrers vint-i-dos mil anys ha tingut lloc durant les darreres quatre dècades. Qui pot defensar, veient això, que no és culpa nostra i que l’escalfament no és antropogènic? Però és que, a més, la corba dels darrers 40 anys té un aspecte clar, terrible i temible: exponencial. Com diuen molts científics, hem entrat a l’època de les conseqüències.

Tots en som responsables, però no ens hem d’enganyar. Uns ho són molt més que els altres. Hi ha qui està trencant el planeta amb l’únic objectiu d’enriquir-se. Veiem que es manté l’extracció de combustibles fòssils mentre es redueix el pressupost de recerca en renovables i no s’elabora cap pla de transició energètica (al menys, a Espanya). En Ben Hayes i en Nick Buxton, al darrer llibre que han editat, parlen de l’actual distòpia: els governs han deixat d’ocupar-se de les persones mentre que els qui manen són les grans corporacions que treballen per al seu benefici econòmic. No importa què diguin els científics: cal fer negoci com sigui, cal continuar explotant i escalfant el planeta, cal tenir més petroli, cal garantir la seguretat energètica del “castell” dels privilegiats. En un bon exemple, en Bru Rovira parla del Txad i explica que va viure un moment ple d’esperança l’any 2003. S’inaugurava l’oleoducte que havia de portar el petroli que es començava a explotar als pous de Doba fins a l’oceà Atlàntic. El petroli havia de portar prosperitat i riquesa. Però aquests 14 anys han demostrat el contrari. El Txad és ara un Estat corrupte, dictatorial, endeutat i militaritzat. I aquest model txadià de destrucció i empobriment d’un país ric en recursos que podrien haver servit per millorar la vida de la població, no és un fet estrany o aïllat, com ens fa notar en Bru Rovira, sinó que pertany al nou colonialisme global, amb el qual les grans empreses depreden els recursos amb la col·laboració necessària dels governs occidentals i dels militars. Seguim el dit que assenyala el terrorisme mentre se’ns escapa la mà criminal que amaga el petroli, diu. La ma que ignora el planeta i la immensa majoria de la població mundial.

Acabo amb el que explicava fa uns mesos la Rosa Montero, citant els professors Vitali, Glattfelder i Battiston, que van analitzar més de 43.000 empreses multinacionals. Amb el seu estudi, van descobrir que el 80% d’aquestes empreses estava controlat per només 737 persones. La Rosa Montero (també ho diu Oxfam Intermón) ens confirma que el món pertany a menys de mil persones. I diu que els polítics s’haurien de posar de la nostra part, de part de tota la resta de ciutadans, per intentar controlar els potentats. Perquè això és el que implica el binomi democràcia – sostenibilitat. No crec que es pugui dir més clar.

Per cert, en Rafael Vilasanjuan es pregunta on són ara els refugiats, i constata que Europa destina molts diners per pagar guardacostes libis per impedir-los que surtin del país, o per tornar-los si aconsegueixen sortir-ne.

Els dibuixos de la ciència

dijous, 25/05/2017

Diuen que la ciència és complicada. Fins i tot hi ha qui pensa que la majoria de gent odia les matemàtiques. No ho crec. Soc dels que penso, com en George Steiner, que les matemàtiques, junt amb la música i la poesia, són els tres llenguatges de l’home, i que per això pot ser recomanable aprendre’ls i gaudir-ne. Steiner diu que hauríem de celebrar la prodigiosa fortuna per la qual, un “pobre animal forcat” (que és com Shakespeare ens defineix) ha engendrat aquests tres llenguatges majestuosos, i que hauríem de contemplar orgullosos i meravellats les creacions en que conflueixen aquests tres codis.

El mite de la dificultat de la ciència i de les matemàtiques cau i es desfà en engrunes quan ens adonem que molts conceptes científics es poden explicar amb un dibuix. Res de números, res de formules. Només llapis i paper. Aquí al costat en teniu una petita mostra amb quatre dibuixos. Són d’Aristarc de Samos, de Marie-Anne Paulze, de Santiago Ramón y Cajal i d’Isaac Newton.

El dibuix de dalt, d’Aristarc de Samos (de fet es tracta d’una reproducció que podeu trobar al llibre de Eric M. Rogers) és el resultat del que va pensar només mirant el cel de nit i sense sortir del seu poble. Les seves deduccions ens han arribat gràcies a la traducció de Commandino del llibre de Pappus d’Alexandria, que ha estat recentment publicat en edició facsímil. Aristarc, després de mirar molts dies les fases de la Lluna, va concloure que la Lluna era un astre esfèric, que les fases eren el resultat de la llum que rebia del Sol, i que la Terra i el Sol també havien de ser astres esfèrics. I a més, molts segles abans que Jules Verne, va fer un viatge imaginari a la Lluna i va entendre perfectament la posició relativa dels tres astres en el moment del quart creixent (o minvant): el que va dibuixar diu que si algú fos a la Lluna en el moment just del quart creixent, veuria que angle entre la Terra i el Sol és un angle recte. Es va adonar que quan la Lluna és en quart creixent, l’angle és el mateix que ja utilitzaven per construir els temples, les cases i els carrers de les ciutats. Aristarc va entendre els astres mirant, pensant, i dibuixant. Després, va mesurar l’angle que ell veia des de la Terra entre la Lluna i el Sol, i va poder deduir, per primera vegada a la historia de la humanitat, la distància relativa a que tenim el Sol i la Lluna (amb un petit error de 2,5 graus en la mesura de l’angle, error que no desmereix gens tot el que va pensar). Tot plegat, només amb un triangle.

Marie-Anne Paulze va fer els dibuixos dels llibres del seu company i marit, l’Antoine Lavoisier. Els dibuixos del rigor dels experiments, pesant-ho tot com mostra la imatge, que podeu també trobar a l’edició facsímil del seu llibre. Són els experiments que van enterrar l’alquímia i que van obrir la porta a la química moderna, els dibuixos de la crònica de com s’ha de fer els experiments per a que siguin fiables i puguin ser reproduïts. Gràcies a Lavoisier i als dibuixos de Marie-Anne Paulze, ara entenem els processos de combustió i oxidació, sabem com es combinen els elements químics, i podem fabricar medicaments i tota mena d’objectes.

El dibuix de baix al mig, és de Santiago Ramón y Cajal i el podeu trobar en un llibre recent que han publicat als Estats Units amb alguns dels seus dibuixos. El que veieu aquí és el dibuix de les capes de neurones que tenim a la retina, que pre-processen les imatges que veiem per tan d’enviar-les al cervell ja “digerides”. Ramón y Cajal deia que dibuixar neurones és com dibuixar un bosc, i que si no fem més que dibuixar arbre rere arbre, el resultat no serà un bosc. Deia que el dibuix d’un bosc requeria entendre l’essència del bosc, més que els arbres individuals. Per això, Santiago Ramón y Cajal observava als matins amb el seu microscopi, dinava, i a la tarda dibuixava el que recordava que havia vist al matí. Interessant, oi?

Finalment, a baix a la dreta teniu una meravella incunable. És un dels dibuixos que Isaac Newton fa anotar a la primera edició del seu llibre “Philosophiae Naturalis Principia Mathematica”, per indicar el que caldria afegir a la segona edició. Podeu veure i llegir les 1031 pàgines del llibre a l’edició digital facsímil de la Universitat de Cambridge, que és una absoluta joia. El dibuix, que ens explica el moviment parabòlic que observem quan tirem una pedra, una poma o una pilota, és el que també ens deixa entendre el moviment de la Lluna, el de la Terra i la dinàmica de tot l’Univers. El geni de Newton va quedar manifest amb la seva frase “he vist que les forces es corresponen de manera bastant aproximada” que va formular el dia que va entendre que la força que feia caure les pomes amb trajectòria parabòlica era la mateixa que mantenia la Lluna en òrbita en un constant moviment de caiguda cap a la Terra. Va entendre tota la dinàmica dels astres mirant el moviment parabòlic dels objectes que tirem, i ho va fer, també, sense sortir del seu poble.

Per cert, en Kilian Jornet diu que el que importa quan vas a la natura és sentir-te despullat davant d’ella, perquè sense grans mitjans es poden fer grans coses. Diu que no som els amos d’aquest planeta, sinó únicament una part, i que no som més importants que un arbre o que una pedra.

El real i l’imaginari

dijous, 2/03/2017

Com deia l’Anthony Gottlieb fa uns mesos al New York Times, la ciència actual s’està tornant cada cop més estranya. Einstein es neguitejava perquè, segons la mecànica quàntica, sembla que Déu estigui jugant als daus amb l’Univers. Però ara sembla, en paraules d’en Gottlieb, que hàgim passat del casino i els daus a la màgia. Perquè resulta que segons les darreres teories cosmològiques, és probable que tota la matèria de l’univers, inclosos nosaltres, vinguem del no-res.

Els físics diuen que el món és una proliferació contínua i bellugadissa d’entitats efímeres que es creen i desapareixen sense parar. Segurament és (i som) un conjunt de vibracions, una munió d’esdeveniments i de relacions, no de coses. Ens ho explica en Carlo Rovelli en un llibre que ja he comentat alguna altra vegada. En Rovelli ens parla també de la teoria dels llaços, segons la qual l’espai, que no és continu, està format per petits grans o quàntums d’espai, cent mil milions de milions de vegades més petits que el més petit dels nuclis atòmics. Aquests minúsculs grans no són enlloc, no poden ser enlloc perquè ells són l’espai. I el temps? Sabem què és el temps? La veritat és que és un concepte que tampoc acabem d’entendre, entre altres raons perquè no és únic: podem parlar del temps psicològic que experimentem quan recordem el passat, del temps termodinàmic que va passant mentre la sopa es refreda, o del temps cosmològic de l’univers en expansió. Però hi ha coses que la física sí que ens explica una mica. Gràcies a Ludwig Boltzmann i a molts físics del segle XX, ara sabem que només hi ha diferència entre passat i futur quan hi ha calor, perquè la distinció entre futur i passat es basa en que la calor va de les coses calentes a les més fredes. I, per què hi va? Per què la sopa que tenim al plat s’acaba refredant enlloc d’escalfar-se encara més? De fet, la resposta a aquesta darrera pregunta és molt sorprenent, i es troba a la base de tota la física moderna: la calor va del que és calent al que és fred per atzar. Perquè en els xocs entre molècules d’un objecte calent i molècules d’un de fred, és molt més probable que les primeres passin energia a les segones que no pas que veiem el fenomen contrari. La calor no va de les coses calentes a les fredes obligada per cap llei absoluta, sino que hi va només amb gran probabilitat, com ens deixa clar en Carlo Rovelli. Sabem que la sopa al plat es refreda, però hi ha una petita probabilitat, molt i molt petita, que algun dia veiem que s’escalfa encara més. Des de fa més d’un segle, la física ha hagut d’abandonar les certeses i acceptar que l’únic que podem saber de molts fenòmens del món super microscòpic és si són més o menys probables.

En resum: la matèria, tan real i palpable, és un conjunt de relacions i vibracions. L’espai són grans que no es troben enlloc, i el temps sorgeix de la probabilitat. Quasi res, oi?

Parlant de probabilitats, el darrer llibre que ha escrit en Sean Carroll, “The big picture”, força polèmic i que tot just he començat a llegir, és tot un viatge que va del més ínfim al món que experimentem, veiem i sentim. Un viatge, guiat per la física i les probabilitats, per aquest món d’extraordinària bellesa i diversitat que gaudim cada dia. Ara sabem, diu Carroll, que tot el que hi ha, objectes, plantes, animals i nosaltres, està fet amb molt pocs tipus de partícules elementals unides amb molts pocs tipus de forces bàsiques: el món i nosaltres mateixos som agregats amb un nombre astronòmic de molt poques peces: som quarks, gluons i electrons. Carroll defensa a més el que anomena “naturalisme poètic”, afirmant que tot el real és el que hi ha a la natura i en que no hi ha res fora de la natura. Si escalem les lleis fonamentals de la natura al món, als planetes i a nosaltres, Carroll argumenta que podem arribar fins i tot a estimar la probabilitat que existeixin Déu, l’ànima i la vida després de la mort. Segons comenta també en Michael Shermer, la conclusió de Sean Carroll és que aquestes probabilitats són molt petites.

La conclusió de Sean Carroll és contundent i a la vegada respectuosa. No parla categòricament, només ens explica el que és probable i el que no ho és. I el cert és que nosaltres tampoc som gaire probables. En Tim Radford diu que és clar que els àtoms no tenen vida, però que poden formar agregats molt i molt especials que anomenem “tu i jo”. La vida és un petit i efímer episodi que capgira temporalment aquest viatge inexorable de l’univers cap l’increment constant de la seva entropia, imposat pel segon principi de la termodinàmica. La vida és el fruit quasi màgic de la tendència metabòlica (hereva de la química) a construir, crear i complicar-se. Tot, gràcies a les lleis de la física.

El cert és que no sabem què som. Sabem que som éssers conscients perquè podem llegir aquest i altres textos, però curiosament ningú sap què és la consciència ni la pot definir, com bé ens recorda en Tim Radford. Ara bé, el que sí sabem és quins són els nostres components, i hem pogut descobrir algunes de les lleis d’aquesta natura de la que som part inseparable.

Aristòtil pensava que la Terra era al centre de l’univers i que estava formada de només quatre elements: terra, aigua, aire i foc. També creia que el Sol, la Lluna i els estels eren divins i perfectes, fets de matèria no terrenal: la quinta essència o èter. En vint segles hem avançat una mica, i ara hem vist que tot és fet de quarks, electrons i gluons amb un bany energètic de fotons. Vam començar amb quatre elements i al cap de 23 segles en tenim uns altres quatre. Això sí, amb una diferència: sabem que no hi ha quinta essència i que tot, Cel i Terra, són fets de les mateixes partícules elementals.

L’important, ens diuen els físics, és separar bé el que hem arribat a saber i que hem pogut comprovar i constatar, del que imaginem i suposem. La humanitat, quan era jove, creia en la quinta essència, i nosaltres quan érem petits creiem en els reis mags d’orient. Després hem vist que els reis no són tan mags, que tot l’Univers és fet del mateix tipus de matèria, i que no hi ha fantasmes ni bruixes. I és que les coses són molt més senzilles quan les sabem veure sense prejudicis. És clar que tothom té dret a pensar en mites imaginaris, però és bo saber que la ciència i els físics ens ajuden a desgranar el real d’allò que és, amb molt alta probabilitat, imaginari.

———

Per cert, en Bru Rovira diu que el que s’hauria de debatre a la ONU i a les cimeres internacionals és si primer és la indústria i després la política, o bé si la política decideix sobre la indústria. És a dir, cal debatre qui mana en els assumptes de la pau i l’ordre.

Esferes amb personalitat

dijous, 23/02/2017

No sé si heu vist “El despertar de la força” (episodi setè d’Star Wars). Jo, he de confessar que no. Però vaig quedar atrapat pel que podríem dir-ne la “personalitat” del robot BB-8. Ho podeu veure en aquest vídeo, curtet, d’una entrevista als creadors del robot, Matt Denton and Josh Lee. Cal dir que és un objecte ben estrany. Roda en totes direccions, sempre amb el cap ben alt. Es para on vol, i mira qui parla amb moviments ràpids del cap que trobem divertits perquè ens recorden els nostres. Té una mena de simpatia artificial que se’ns fa difícil definir.

Quan veiem com es mou, no és gens evident entendre com ho fa. Com és que sap anar “on vol”? Com és que sempre va amb el cap dret? Com es pot fer que el moviment del cap sigui totalment independent del de l’esfera-cos? Com diu molta gent, el BB-8 és un dels personatges més carismàtics, interessants i ben aconseguits de la pel·lícula. Probablement perquè ho amaga tot dins la seva simplicitat esfèrica. Barregeu l’aparença externa més simple que pugueu imaginar amb moviments que ens resulten familiars, i el misteri està servit.

Sentiu curiositat per saber com funciona i què té dins? Jo en vaig sentir, i molta.

Disney va mantenir el secret durant dos anys, però finalment, l’any passat, ens va explicar com funcionava. Ho podeu veure en aquest vídeo (és una mica llarg, però podeu anar directament als minuts 37-39 que és on s’explica el funcionament; les dues imatges de dalt són d’aquests minuts del vídeo i presenten tant l’aspecte extern del BB-8 com els mecanismes interns). Cal reconèixer que funciona per control remot, i que per tant no és autònom; però crec que això no li treu mèrit ni interès. El mecanisme, en forma de creu, conté un eix quasi-vertical i un altre d’horitzontal que fa girar les dues rodes de plàstic que podeu veure a dreta i esquerra a la imatge. A la base de l’eix quasi-vertical trobem la bateria, els motors, els actuadors, els sistemes electrònics i de control i un giroscopi. El pes de tots aquests components fa que sempre quedin a la part de sota, mentre les dues rodes de plàstic es recolzen a la part interior de l’esfera i la fan girar, de manera no massa diferent a com els hàmsters fan girar la roda de la seva gàbia. Per girar, però, cal saber en quina direcció anem i cap on volem anar, i això no és fàcil dins d’una esfera tancada i fosca. Aquí és on intervé el giroscopi, que permet conèixer en cada moment l’orientació de l’eix inferior. En base a aquesta orientació i a la direcció en que volem que es mogui el robot, els actuadors inclinen una mica, a dreta o esquerra, aquest eix quasi-vertical inferior i el cos esfèric del robot avança i gira a la vegada. No és res que sigui massa complicat, tot es basa en els principis de la mecànica i en concret de la dinàmica.

Ara bé, com és que sempre porta el cap ben dret? Doncs perquè el cap és un objecte totalment separat del cos del BB-8. Es mou per la seva superfície esfèrica amb rodaments de boles, i es manté sempre en contacte amb ella per la força d’un conjunt d’imants que el deixen sempre damunt del plat metàl·lic que podeu veure a la part superior del mecanisme intern del robot. Tot plegat és en una patent que Disney va sol·licitar l’any 2010, cosa que demostra que aquesta idea del cap flotant no va ser pas un disseny improvisat.

La recepta del BB-8 és ben senzilla. Un motor elèctric intern que fa girar l’esfera, un eix que es manté quasi-vertical pel pes del motor i bateria i que governa els girs a més d’assegurar que el cap sempre és a la part superior, un cap independent que es mou amb imants i rodaments de boles. Tot ben embolicat amb una esfera i una mena de cúpula. El BB-8 sap amagar els seus mecanismes amb una pell i vestits geomètrics que el fan atractiu. Ja sabem que la personalitat neix del misteri…

Però, com diu la Carme Torras, els robots actuals ens porten a pensar a més en termes d’ètica. Perquè els sistemes industrials i els hominoides de la ciència-ficció, tan diferents fins ara, “comencen a confluir gràcies al ràpid desenvolupament de la robòtica assistencial i de serveis. S’estan dissenyant robots que puguin interaccionar amb les persones, ja sigui atenent discapacitats i gent gran, fent de recepcionistes o dependents en centres comercials, o actuant de mestres de reforç o de mainaderes”. És clar, com explica la Carme, que aquests anomenats robots socials plantegen un ventall de qüestions ètiques molt amplies i complexes, que no podem deixar de plantejar, debatre i resoldre.

Per cert, sabem fer esferes amb personalitat i fem plans per anar a Mart. Però el nostre gran fracàs actual és el de no saber utilitzar les eines que ja tenim, per resoldre problemes com els de la fam, els refugiats i desplaçats, la manca de seguretat humana i la mort indiscriminada de població civil. Joyce Luma (ONU) ha denunciat que no es vol posar fi a l’enfrontament fratricida pel poder dels rics recursos energètics.

La ciència i els camins

dijous, 19/01/2017

Fa poc vaig llegir una anàlisi que comparava els articles científics més rellevants de l’any 2015 amb els que van tenir més difusió als mitjans i a les xarxes. És d’aquesta pàgina web, que malauradament només és accessible als subscriptors, i que va ser dissenyada per Jen Christiansen. La web mostra les 25 institucions més productives del món segons l’index Nature 2015, que és un indicador que es basa en el nombre d’articles publicats en 68 revistes de la màxima qualitat científica. Les set institucions amb més articles de qualitat segons aquest índex són l’Acadèmia Xinesa de ciències, la Universitat de Harward, el CRNS Francès, l’institut alemany Max Planck, Stanford, el MIT i la Universitat de Tokyo (la llista de les 25 no inclou cap centre ni cap Universitat espanyola ni catalana). En una segona columna, podem veure els 25 estudis més citats per la premsa durant el mateix any 2015. Aquesta segona llista es basa en l’index Altmetric, que mesura el nombre ponderat de vegades que un determinat estudi científic ha sortit als mitjans de comunicació i a les xarxes socials. L’interessant és que d’entre aquests 25 estudis altament citats pels mitjans i xarxes socials i que inclouen bàsicament medicina i salut, biologia, pol·lució i canvi climàtic, només 8 d’ells venen d’institucions de la primera llista. Sembla que el que és socialment rellevant no acaba de coincidir amb allò que es considera punter en el món científic.

Cal dir que en Jan Christiansen ha creat també molts altres diagrames de “ciència gràfica”, com ell els anomena. Alguns els podeu veure a la seva pàgina web. Un dels que m’ha agradat és aquest, que mostra l’evolució del tipus de temes que han estat portada de la revista Scientific American des de 1920 fins 2014. En ell es veu clarament que han anat desapareixent els temes d’enginyeria més clàssica, deixant pas a la biologia i als nous descobriments en neurociència i evolució (a més de les constants troballes en física de partícules i astronomia). Tot va evolucionant. Però evoluciona lentament, poc a poc. Més pausadament que el que molts voldrien, en aquesta cultura actual de la velocitat i de la immediatesa.

La divulgació no és fàcil, justament perquè la gestió del temps en el món científic és molt diferent a la que podem veure en el món de la premsa, ràdio i televisió. Els mitjans demanen grans titulars, i els científics en tenen ben pocs. Els mitjans necessiten impactar amb l’anunci de grans resultats mentre el món de la ciència va fent camí, poc a poc i sense pressa, per senders que no tenen final. La gent demana conclusions i punts d’arribada, però els científics avancen pas a pas, i malauradament aquests passos no són noticia. En ciència, els moments singulars de les grans troballes són molt escassos. Einstein comentava que després de pensar durant mesos i anys, el 99% de les vegades el seu resultat era inútil i les conclusions falses. I Edison, en una frase que resumeix l’essència de la recerca, deia: “no he fallat, només he trobat deu mil camins que no funcionen”. Per què llegim una i altra vegada que s’ha trobat el remei contra el càncer, i per què ens agrada que ens ho diguin? Anem millorant, això sí, però lentament i gràcies a molts i molts investigadors que mai arribarem a conèixer i que ens van preparant el llarg camí dels descobriments. De tant en tant, tal vegada els articles de divulgació podrien parlar del camí, més que el de les suposades arribades. Perquè la recerca és més semblant a l’Angya i a una caminada de 20 o 30 quilòmetres que a una cursa de 100 metres lliures.

I la divulgació no és fàcil perquè és un joc d’equilibris que hem de fer tot caminant. Alguns amics físics em comenten que la teoria de la relativitat pot explicar-se de tres maneres: amb un llenguatge rigorós que només entenen els físics, amb un llenguatge intermedi que requereix un petit esforç per part del lector (no superior al que cal per llegir poesia, per exemple) o amb un llenguatge entenedor per tot el món; el que passa, diuen, és que en aquest últim cas ja no s’està explicant res de la teoria de la relativitat. La divulgació ha de nedar entre dues aigües, i en això rau la seva dificultat. No hem de suposar que els lectors ho saben tot, però tampoc cal tractar-los com a nens, perquè si llegim és per descobrir, entendre i acabar comprenent. I això sempre comporta un esforç. El científic fa camí, però el lector d’articles de divulgació, també.

———

Per cert, en José Ramón Alonso s’oposa a l’arrogància occidental i en concret a l’interès d’alguns per confirmar que el cervell de l’home blanc és més gran que els altres. Diu a més que tenim l’obligació de deixar el món als nostres fills millor de com l’hem trobat, i pensa que no ho fem.

El rellotge dels 10.000 anys

dijous, 5/01/2017

Els acords de llarga durada són sans i desitjables. Però segurament hi ha moltes més coses que podríem fer amb visió serena i a llarg termini. Sense anar més lluny, la Fundació “Long Now es proposa fomentar el pensament a llarg termini en el context dels propers 100 segles. El seu objectiu és oferir un contrapunt a la visió actual de “més ràpid i més barat”, en base a fomentar la responsabilitat i promoure el pensament “més lent i millor”. En el context d’aquest pensament a llarg termini, la Fundació utilitza dates de 5 dígits i diu que som a l’any 02017, per exemple.

L’inventor d’aquest rellotge dels cent segles, que és també un dels fundadors de Long Now, és en Danny Hillis. En Danny va presentar les seves idees ja fa més de vint anys, l’any 01995. En una declaració òbviament optimista deia que, tenint en compte que l’edat de la nostra civilització és de deu mil anys, aquest rellotge suposa el repte de no extingir-nos durant uns altres 10.000 anys, durant els quals caldrà que els nostres descendents sàpiguen tenir cura d’ells mateixos i del rellotge.

El rellotge està dissenyat amb materials resistents i estables que inclouen el titani a més del quars, boles de ceràmica per als coixinets i acer inoxidable marí amb un alt percentatge de molibdè. Es muntarà en un pou artificial vertical de 150 metres que està sent excavat en una muntanya de l’estat de Texas. És un rellotge clàssic, mecànic, però molt sofisticat. El seu pèndol de titani, amb un període de 10 segons, oscil·larà lentament impulsat per un típic mecanisme d’escapament i amb l’energia subministrada per un gran pes de pedra. Els dissenyadors han fet ja un prototip a escala reduïda, que es pot veure al museu de la ciència de Londres. El teniu a la imatge de dalt, que he obtingut d’aquest pdf. Però, qui i com donarà corda al rellotge? La resposta és que l’energia que necessita per funcionar la obtindrà en part dels visitants i en part del Sol. Els que vulguin visitar el rellotge es trobaran amb un molinet horitzontal, com el de l’àncora d’un vaixell però més gran. Com podeu veure al vídeo d’aquesta web, el gir del molinet farà girar el cabrestant del rellotge i aixecarà els pesos de pedra. Això sí, caldrà la força de dos o tres visitants. Quan no hi hagi visitants, el rellotge obtindrà l’energia a partir de les diferències de temperatura entre dia i nit. La llum solar entrarà per una finestra de safir orientada cap al sud situada dalt de la muntanya, i escalfarà una càmera d’aire que acabarà fent girar un cilindre de grafit. Aquest sistema subministrarà energia suficient per mantenir el pèndol en moviment, i a més servirà per corregir l’hora del rellotge a partir de la posició del Sol al migdia. Trobareu més detalls en aquest article científic. Tot està pensat per a que el rellotge pugui funcionar durant anys sense cap visitant i fins i tot sense llum solar. Si alguna erupció volcànica acabés amagant el Sol durant mesos o anys, la variació de temperatura entre dia i nit seria suficient per mantenir-lo en moviment.

Els visitants entraran a la gran cambra del rellotge, foradada a la muntanya, i hauran de començar a pujar. Després de passar els pesos de pedra, arribaran al molinet horitzontal per donar-li corda. A continuació, veuran 20 enormes rodes horitzontals amb enginyosos mecanismes de creu de Malta, que calcularan i tocaran més de 3,5 milions de melodies, totes diferents, al llarg dels segles. Una cada dia, al migdia, però només els dies que hi hagi visitants (perquè les campanes necessiten l’energia del molinet; el pèndol en té prou amb l’energia dels canvis tèrmics entre dia i nit, però no el mecanisme de tocar les campanes). Les campanades mai es repetiran, de manera que l’experiència de cada visitant serà única. El rellotge “calcularà” les melodies amb aquest sistema mecànic de ranures i passadors lliscants. De manera similar a la màquina diferencial de Babbage, generarà cada dia una seqüència diferent per a les deu campanes. Tot sense electricitat i sense energia externa. En Danny Hillis diu, ben cofoi, que aquest rellotge serà l’ordinador més lent del món. Mireu l’animació de les creus de Malta d’aquesta pàgina web. Oi que té el seu encant?

El rellotge també incorpora un sofisticat sistema per posar-se en hora automàticament, i treballa amb 5 temps diferents. El temps del pèndol és el que surt de comptar les seves oscil·lacions, i avança un pas cada 5 minuts (30 oscil·lacions de pèndol). El temps solar sense corregir es trobarà moodificant el temps del pèndol en base a l’equació del temps, mentre que el temps solar corregit tindrà en compte la posició del Sol al migdia. Aquest temps només es podrà obtenir els dies solejats; els altres dies, el sistema anirà emmagatzemant les correccions pendents, que seran recuperades i aplicades quan torni a sortir el Sol. Després tenim el temps solar mostrat, que només s’activarà i calcularà quan hi hagi visitants que donin corda al rellotge fent girar el seu molinet. Aquest temps solar mostrat inclou un calendari Gregorià que indicarà la data de la visita. Finalment, el temps planetari incorporarà una correcció per tenir en compte la reducció de la velocitat de rotació de la Terra, i ho farà amb una lleva que representarà i codificarà la funció quadràtica de correcció en la seva pròpia forma. El temps planetari és el que permetrà la visualització, cada cop que algú entri a mirar-ho, de la posició de tots els astres del sistema solar en aquell moment.

M’agrada aquesta idea del pensament a llarg termini, del pensament “lent i millor” que promou la Fundació Long Now. El fet de construir objectes i ginys de llarga durada és tot un repte, pels que els construeixen i per tots aquells que s’hauran de plantejar si en tenen cura o es fan responsables, davant els seus descendents, de la seva destrucció. Jo diria que ja ara tenim dos mons que conviuen. El món frenètic de la immediatesa, de la velocitat i de fer el màxim de coses en poc temps, i el món tranquil del pensament assossegat i creatiu. Són dues maneres de gestionar el temps. Dia a dia ens toca escollir quina adoptem. Però hem de ser ben conscients d’una cosa: la creativitat està renyida amb les presses i amb la visió a curt termini, perquè és ben conegut que les idees ens venen quan pensem lentament i sense angoixa. És el que ens expliquen els membres de la fundació Long Now. Aquest telèfon mòbil que portem a la butxaca i amb el que enviem centenars de missatges ràpids cada dia, existeix perquè moltes persones van estar pensant i donant voltes durant hores i hores, capficats en infinits problemes científics i tecnològics que ja no valorem. Van tenir temps, van tenir idees, van ser creatius, i ara en gaudim. Per això és bonic que, davant un món que pensa bàsicament en comprar, vendre, especular i enriquir-se el més ràpid possible, els responsables del projecte del rellotge dels deu mil anys ens expliquin que no tenen cap pressa: l’estan pensant pels nostres néts i pels besnéts dels nostres besnéts.

Per cert, en aquest context de treball tranquil i de llarga durada, els responsables de la construcció del rellotge diuen que no tenen cap data de finalització prevista. Pensen obrir al públic el seu rellotge dels cent segles una vegada estigui llest i acabat.

Einstein i les cinc cases

divendres, 23/12/2016

Fa poc, una amiga em parlava de l’endevinalla d’Einstein. Bé, de fet no és clar que fos proposada per Einstein, però val a dir que és interessant. Alguns suggereixen que Einstein la va inventar no pas com a test d’intel·ligència, sinó per desfer-se de la majoria d’estudiants que li demanaven que els dirigís la tesi doctoral. Una altra cosa que es diu és que Einstein afirmava que el 98% de les persones serien incapaces de resoldre-la.

Aquesta és l’endevinalla: En un carrer hi ha cinc cases de colors diferents i en cada una hi viu una persona de nacionalitat diferent. Els cinc amos beuen tipus de begudes diferents, fumen marques de tabac diferents i cada un té un animal de companyia diferent al dels altres (per cert, la imatge de dalt la podeu trobar a aquesta pàgina web). El que sabem és això:
1. El britànic viu a la casa vermella.
2. El suec té un gos d’animal de companyia.
3. El danès beu te.
4. El noruec viu a la primera casa.
5. L’alemany fuma Prince.
6. La casa verda és immediatament a l’esquerra de la blanca.
7. El propietari de la casa verda beu cafè.
8. El propietari que fuma Pall Mall cria ocells.
9. El propietari de la casa groga fuma Dunhill.
10. L’home que viu a la casa del centre beu llet.
11. L’home que fuma Blends viu al costat del que té un gat.
12. L’home que té un cavall viu al costat del que fuma Dunhill.
13. L’home que fuma Bluemaster beu cervesa.
14. L’home que fuma Blends viu al costat del que beu aigua.
15. El noruec viu al costat de la casa blava.

I la pregunta és: qui és que té un peix com animal de companyia?

L’endevinalla és un bon exercici de combinatòria i una bona mostra de l’ús de tècniques algorísmiques per resoldre problemes amb l’ajut dels ordinadors. Analitzem el que ens diuen. En primer lloc, és fàcil veure que dins d’aquestes 15 pistes trobem el color de totes les cases (blanc, groc, verd, vermell i blau), la nacionalitat de tots els seus habitants (britànic, suec, danès, noruec i alemany), les seves begudes (te, cafè, llet, cervesa i aigua), el seu tabac (Prince, Pall Mall, Dunhill, Bluemaster i Blends) i el seu animal de companyia (gos, ocells, gat, cavall i peix). El que hem de fer és posar en ordre totes aquestes informacions de manera que quedin relacionades segons les pistes que ens donen. A més, també hem de trobar en quin ordre tenim les cases, perquè algunes preguntes (com la 6) justament ens parlen de relacions de veïnatge.

Quantes possibles solucions tindríem si no ens donessin cap pista? Suposem que numerem les cases al llarg del carrer, de la 1 a la 5. Podem assignar nacionalitats dels habitants a cada una de les 5 cases de 120 maneres diferents, perquè el nombre de permutacions de 5 elements és 120. Ara bé, també tenim 120 maneres d’assignar color a les cases, 120 maneres d’assignar begudes als habitants de cada casa, 120 maneres d’assignar-los tabac i 120 d’assignar els animals de companyia. En total, el nombre de possibilitats és 120 multiplicat per sí mateix 5 vegades, o sigui 120 a la cinquena potència. En altres paraules: si volem anar provant fins encertar-la, hem de saber que el nombre total de casos possibles que haurem d’analitzar és de més de vint-i-vuit mil milions.

Per resoldre el problema de manera més eficient, és molt útil tenir una bona representació de la solució. En el nostre cas, pot ser una taula de doble entrada amb 5 files i 5 columnes. A cada una de les files tenim la informació de una de les cases (ordenada de manera que tenim la primera casa del carrer a la primera fila i la darrera a la fila 5), i, a cada una de les columnes, informació sobre el color de la casa, la nacionalitat de la persona que hi viu, la seva beguda, la seva marca de tabac i el seu animal de companyia. També es bo analitzar i classificar les pistes per veure quines d’elles són més informatives. N’hi de tres tipus. La 4 i la 10 són pistes estàtiques que ens permeten posar informació ja definitiva a la taula: la nacionalitat de la fila 1 és noruega, i la beguda de la fila 3 és llet. En un segon grup, tenim vuit pistes (les 1, 2, 3, 5, 7, 8, 9 i 13) que ens informen de relacions binàries entre dos elements de la mateixa fila de la taula (vegeu nota al final). Finalment, les 5 pistes restants (6, 11, 12, 14 i 15) són relacions de veïnatge entre cases de files contigües. L’interessant de tot plegat és que, amb les dues pistes estàtiques, les vuit binàries i dues de les de veïnatge podem reduir dràsticament l’espai de cerca i passar de les més de vint-i-vuit mil milions de possibilitats a 288, tot convertint un problema intractable en un altre de fàcil solució.

Ara ja podem continuar amb raonaments basats en les relacions de veïnatge. Podeu trobar la solució completa del problema a moltes pàgines web, si us canseu de fer proves. Fins i tot teniu vídeos, com aquest, que ens mostren la solució (l’amo del peixet és l’alemany) i una estratègia de prova i error per trobar-la. En tot cas, el bonic de veure és que, amb no massa feina, hem passar d’haver de tractar aquests vint-i-vuit mil milions de casos a uns quants centenars. I això és justament el que fem quan pensem algorismes per resoldre problemes amb ordinador: a l’oceà de possibles solucions, intentem descartar, amb el mínim esforç, camins que sabem que no ens portaran enlloc. És una manera de podar l’arbre de solucions possibles fins que el nombre d’alternatives sigui tractable. Llavors, podem continuar podant o podem simplement provar, per cada una de les opcions candidates que ens han quedat, si satisfan la resta de pistes o restriccions del problema (que en el nostre cas són les cinc de veïnatge).

———

Per cert, en Bru Rovira diu que els mateixos que ploraven  al Parlament Europeu durant l’acte d’entrega del premi Sàkharov a la llibertat d’esperit a la Nadia Murad i la Lamia Haji Bachar, van decidir la setmana passada que la UE podrà reenviar a Grècia, a partir del mes de març, els demandants d’asil que hagin entrat per aquest país.

———

NOTA: les vuit pistes (1, 2, 3, 5, 7, 8, 9 i 13) que codifiquen relacions binàries les podem expressar de manera compacte si anomenem les cinc files de la taula com C, N, B, T i A (color, nacionalitat, beguda, tabac i animal, respectivament. Direm que la pista 1 és N-C perquè ens relaciona la nacionalitat amb el color de la casa. De la mateixa manera, la pista 2 és N-A, i les altres sis relacions binàries són N-B, N-T, C-B, T-A, C-T i T-B. Són relacions que connecten elements d’una mateixa fila de la taula. Tenim quatre relacions N-x, mentre que el nombre de relacions que afecten altres columnes de la taula és menor. I ja sabem que el noruec viu a la casa 1, que la beguda de qui viu a la casa 3 és llet i que el color de la casa 2 és blau (pista 15). Veiem a més (per la relació N-C) que el britànic només pot viure a la casa 3 o a la casa 5 (no pot viure a la casa 1 perquè hi viu el noruec, ni a la casa 2 perquè és blava, ni a la casa 4 perquè en aquest cas, no tindriem cap parella de cases contigües que poguèssin ser verda i blanca, com requereix la pista 6). Tenim per tant dues possibilitats. Si el britànic viu a la casa 3, ja sabem tots els colors de les cases: la casa 2 ha de ser blava, la 3 ha de ser vermella, la 4 verda i la 5 blanca, i per tant, la casa 1 ha ser ser la groga). I en el cas que el britànic visqui a la casa 5, la casa 2 ha de ser blava, la 5 ha de ser vermella, la 3 verda i la 4 blanca, mentre que la casa 1 ha ser ser també la groga. En cada un dels dos casos, podem provar totes les possibilitats de la columna N, que ara són 6 (és el factorial de 3 i no de 5 perquè ja sabem que el noruec viu a la primera casa i que el britànic viu a la 3 o a la 5 segons el cas). Per cada una d’aquestes 6 possibilitats, les dues primeres columnes de la taula, C i N, ens queden ja determinades, així com un animal, dues begudes i dos tabacs (per les relacions N-A, N-B, N-T, C-B i C-T). Un cop fet això, la columna més determinada passa a ser la de la beguda, perquè sabem que la de la casa tercera és llet i en sabem dues més per les relacions N-B i C-B. Per tant, a la columna de la beguda tenim 2 possibilitats (factorial de 2), i encara hem d’usar les relacions N-T, T-A, C-T i T-B. Passem ara a treballar amb la columna del tabac, que és la que surt a les relacions N-T, T-B i C-T. Un cop més tenim 2 possibilitats (factorial de 2) pel fet de tenir 3 relacions.  Finalment, a la columna dels animals, les relacions N-A i T-A ens redueixen les possibilitats a 6 (factorial de 3). En resum: utilitzant la informació de les dues pistes estàtiques, de les vuit pistes binàries i de dues de les pistes de veïnatge (la 6 i la 15), veiem que només hem de provar 2*6*2*2*6 possibilitats (2 possibilitats de casa pel britànic, 6 per la resta de nacionalitats, 2 per la beguda, 2 pel tabac i 6 per l’animal). El total és 2*6*2*2*6 = 288. Estem parlant de menys de 300 possibilitats que haurem de provar ara en relació a les 3 pistes de veïnatge que encara no hem considerat.

Píxels de fa 120 anys

dijous, 1/12/2016

Hi ha idees que són més antigues del que pensem. Fa quasi 120 anys, concretament en un article a la revista “Electrón” escrit l’any 1898, José de Echegaray explicava un sistema per a la transmissió elèctrica d’imatges i moviments que segons deia estava desenvolupant un mestre a Viena. El sistema, certament enginyós, va ser un primer precedent, caigut després en l’oblit, de la televisió i fins i tot de les actuals imatges digitals i dels sistemes de tele-conferència.

José de Echegaray, mort ara fa cent anys, va ser un catedràtic de matemàtiques que va rebre el premi Nobel de literatura l’any 1904. Certament curiós. En això se’l pot comparar a Betrand Russell, l’altre matemàtic que també va obtenir el Nobel de literatura. Echegaray ha estat qüestionat molt sovint com escriptor, però cal reconèixer la seva extraordinària producció com a divulgador de ciència i la tecnologia, a més de la seva tasca com a professor. Echegaray deia que si hagués pogut, enlloc d’escriure drames i teatre, s’hauria dedicat únicament a les matemàtiques. No ho va poder fer perquè, com explicava, “el drama més desgraciat i el crim teatral més modest proporcionen molt més diners que la solució del més alt problema de càlcul integral”

L’article d’Echegaray es basa en les propietats del seleni, que és fotoelèctric. A finals del segle XIX ja era ben sabut que la conductivitat elèctrica del seleni augmenta quan rep la llum. Doncs bé, la idea que exposava Echegaray l’any 1898 (i que podeu veure a l’esquema a la imatge de dalt) es basava en aquesta propietat del seleni i en la idea, molt moderna, de píxel. Echegaray deia: “suposem que construïm una mena de tauler d’escacs amb petits trossets cúbics de seleni, perfectament aïllats i separats els uns dels altres, com un mosaic”. És un tauler de píxels (C a la imatge) que caldrà que col·loquem dins d’una cambra fosca i que rep els raigs de llum (B) que passen pel forat (A) de la cambra. Una munió de cables (I) connecten un dels terminals d’una pila o bateria (P) a tots i cada un dels cubs de seleni. A més, cada un d’aquests cubs està connectat i soldat a un sector circular, de coure, del cercle (E) de transmissió, de manera que el nombre de sectors independents i aïllats del cercle E és igual al nombre de cubs (píxels) del tauler C. Permeteu-me ara que citi textualment Echegaray: “Quan el sistema recull i projecta sobre el tauler (C) qualsevol imatge, el cap d’una dona, per exemple, les petites peces de seleni del encasellat del tauler general rebran diferent quantitat de llum. En plena llum estaran algunes; en plena ombra estaran altres. Moltes només rebran una mitja tinta. I aquestes ombres i aquestes llums formaran, com en la fotografia, per la seva varietat i intensitat: on la resistència és gran, el corrent serà petit; on la resistència sigui petita, arribarà el corrent amb més força. I d’aquesta manera, i amb aquest grapat de conductors, la imatge primitiva s’haurà convertit en una mena d’imatge elèctrica, en què ombres i llums, amb totes les seves gradacions, estaran representades per corrents elèctrics d’intensitat diferent. Serà veritablement una imatge elèctrica, que va caminant per uns filferros. Per uns anirà el cabell amb les seves ondulacions, les seves ombres i les seves llums. Per altres aniran els ulls amb els seus punts brillants i les seves pupil·les blaves o negres. Per altres, els llavis rosats o les suaus galtes. Una imatge dividida en petits trossos, tants com trossos de seleni comprèn el quadre general”. Però la seva idea de la transmissió elèctrica d’imatges no queda aquí, i Echegaray també incorpora el principi de seqüenciació en el temps. Un braç giratori (F), mogut per un motor (G), agafa a cada moment el corrent elèctric d’un dels sectors de coure del cercle de transmissió (E) i l’envia pel cable H1, de manera que entre l’emissor i el receptor de les imatges només cal que tinguem dos cables, els H1 i H2. A cada volta del braç giratori F, el sistema recorre i envia tots els píxels de la imatge projectada sobre C, sabent transmetre imatges en moviment a raó d’un fotograma per volta. Després, en el sistema receptor, un sistema braç-cercle idèntic al E-F envia els senyals elèctrics a un tauler semblant al C però amb petites bombetes enlloc de cubs de seleni. Echegaray fins i tot pensava que es podia arribar a enviar i reproduir imatges en color.

El sistema no es va arribar a fabricar de manera satisfactòria, segurament per la dificultat que hi havia, amb la tecnologia de finals de segle XIX, per sincronitzar els braços giratoris dels sistemes emissor i receptor. Però no podem negar que aquest invent portava ja l’embrió d’unes quantes idees que després van quallar durant el segle XX i que ara ens permeten interactuar a distància amb sistemes com skype, duo-google o hangouts. Moltes idees que ens sembla que són noves, no ho són tant, oi?

———

Per cert, la Rosa Montero cita un estudi que va analitzar més de 43.000 empreses multinacionals i que va posar de manifest que el 80% d’elles estava controlat per només 737 persones. Diu que, com que hi ha menys d’un miler de persones que dominen el món, els polítics haurien d’estar de part nostra, de part de tots els altres ciutadans, per intentar controlar aquests potentats.