Arxiu de la categoria ‘Descobriments científics’

Elogi de les interaccions

dijous, 21/06/2018

Quan ens donem un cop amb una porta de ferro, què passa? Ens fem mal perquè la nostra pell xoca amb la matèria sòlida del ferro, amb els seus àtoms?

La resposta és no. No xoquem amb la matèria fèrria sino que som repel·lits, molt abans d’arribar-hi, per les seves forces atòmiques. Són els electrons exteriors dels àtoms de les cèl·lules de la nostra pell els que són aturats en sec per una immensa força d’interacció que es genera entre ells i els electrons dels àtoms de la capa exterior de la xapa de ferro. Perquè una porta de ferro, bàsicament, és espai buit, sense quasi res de matèria. És el que veiem a la imatge d’aquí al costat (que he tret d’aquest vídeo, força conegut i molt recomanable), que mostra l’aspecte que tenen els objectes que considerem sòlids quan els mirem a una distància de l’ordre d’una centèsima d’Àngstrom (un Àngstrom és una mil milionèsima d’un metre: si cada habitant de la Terra s’empetitís fins mesurar un Àngstrom i ens poséssim tots en fila, faríem una línia de 7 metres). Considerem un cub de ferro de densitat 7,9 i de 56 grams. Amb una simple divisió, veiem que el seu volum és de 7,1 mil·lilitres. Ara bé, com que la química ens diu que 56 grams de ferro són un mol, i com que un mol conté 6 per 10 elevat a 23 àtoms (el nombre d’Avogadro), a l’estructura cristallina cúbica del ferro alfa, cada àtom ocupa un espai de 1,2 x (10 ^ (-23)) centímetres cúbics (només cal dividir 7,1 pel nombre d’Avogadro). I ara, l’arrel cúbica d’aquest valor ens dona la separació els nuclis de dos àtoms de ferro veïns: 2,3 Àngstroms. Si ens situem al nucli d’un àtom de ferro amb els seus 56 neutrons i protons (com el de la imatge de dalt), haurem de travessar una distància de 2,3 Àngstroms pràcticament buida que només conté uns quants electrons fins trobar el següent nucli de l’àtom de ferro veí, que veurem que té un diàmetre, en metres, de 5,6 per 10 elevat a la potència menys 15.

Si dividim la distància de 2,3 Àngstroms entre dos nuclis veïns d’àtoms de ferro per aquest valor del diàmetre dels seus nuclis, obtindrem que la relació és de 41.000. O sigui: si el nucli d’un àtom de ferro tingués la mida d’un cigró, el seu veí a l’estructura cristallina de la porta estaria a 400 metres. Aquesta és la imatge d’una sòlida porta de ferro quan la mirem a una distància de l’ordre d’una centèsima d’Àngstrom: un conjunt de cigrons disposats regularment, cada un d’ells a quatre-cents metres dels seus veïns. En mig, en aquests 400 metres, uns pocs electrons que pràcticament no tenen massa i que no es volen deixar veure. Els sòlids són buits. Però atenció: interaccionen fortament amb la nostra pell.

Curiosament, el funcionament del nostre cervell es basa també en les interaccions entre neurones, més que en les neurones mateixes. Diuen que el cervell és l’objecte més complex del sistema solar, encara que només inclogui el 2 per cent del pes corporal. Com podeu llegir aquí, es calcula que dins de la cavitat cranial hi ha cent mil milions de neurones, que gestionen un nombre immensament més gran de connexions neuronals. De fet, el nombre de sinapsis és superior als 1000 bilions, i hi ha investigadors com en Daniel Goldman que diuen que el nombre d’interaccions neuronals és tal vegada superior al nombre d’àtoms que podem trobar a l’Univers conegut. El nostre cervell consumeix un 20 per cent de la nostra energia total (de fet, en els nadons, el cervell consumeix un 65 per cent de la seva energia total), i és tant sofisticat que el nostre ADN dedica el 80 per cent dels gens per a codificar les seves característiques. Sorprenent, oi?

Ara bé, segons explica en Christof Koch, qualsevol mecanisme molt complex amb un nombre d’interconnexions per damunt d’un determinat llindar i tal que la seva estructura codifiqui un conjunt de relacions causa-efecte, acaba tenint un cert nivell de consciència i sentint alguna cosa que ve de dins seu. Perquè segons la teoria de la informació integrada de Guilio Tononi, la consciència d’un cert sistema, a partir d’una determinada massa crítica de complexitat, ve determinada per les seves propietats causals, i per tant, la consciència acaba sent una propietat intrínseca i fonamental dels sistemes físics quan esdevenen més i més complexes. O sigui, que és un poder causal intrínsec que apareix automàticament en mecanismes molt i molt complexes com el cervell humà. De fet, Tononi diu que la complexitat d’un cert sistema ens pot donar una mesura del seu grau de consciència. A la seva teoria integrada de la informació, aquesta mesura la quantifiquen amb un valor que anomenen “Fi”. I el valor “Fi” del cervell humà és tan gran, que fa impossible calcular o simular-ne això que en diem consciència. La consciència no es pot simular, perquè només es troba dins la mateixa estructura dels sistemes que ho són.

El ferro és sòlid no com a conseqüència de la matèria que el conforma (matèria que deixa immensos espais buits), sino que ho és com a resultat de les forces atòmiques d’interacció, que, cal dir-ho, són molt poques perquè només afecten els àtoms més propers. I sembla ser que nosaltres som conscients no pel fet de tenir cent mil milions de neurones al cervell, sino gràcies al nombre ingent d’interaccions que generen entre elles. Tots dos, el xoc amb la porta i  pensaments del tipus “sóc viu”, són dos resultats d’una immensitat d’interaccions a nivell microscòpic. Mira per on, bona part del que experimentem cada dia és resultat d’interaccions.

Els humans també interaccionem, encara que amb moderació. L’amor, l’amistat, les relacions, fins i tot les xarxes socials, van modelant el nostre Jo i donen sentit a la nostra vida. Construïm la vida sobre les nostres relacions perquè som animals socials. Però clarament no som com les neurones. Les nostres interaccions són modestes, febles i poc nombroses. Els grecs van crear la democràcia quan van entendre la importància del dret a la paraula, del dret a discutir-ho tot, del dret a interaccionar públicament a l’assemblea i del dret a empoderar-se. Però ens cal lluitar, ara i sempre, per a que aquesta paraula no perdi el seu significat de respecte als drets de totes les persones i per a que no sigui segrestada pels qui pensen més en el seu desig de poder que en la gent.

—-

Per cert, en Pedro Olalla ens recorda que la democràcia va sorgir de la societat grega, quan va posar a l’abast de tothom una cosa fonamental: el dret a la paraula, el dret a discutir-ho tot i i el dret a interaccionar públicament a l’assemblea i a l’Àgora. Explica que la democràcia va brollar de l’ànima dels grecs quan van comprendre que la vida humana era única i més valuosa que qualsevol tresor o ambició, cosa que va portar a un pas progressiu del poder cap a mans dels ciutadans.

L’Alzheimer i els ritmes

dimecres, 30/05/2018

Durant els darrers cent anys hem après molt sobre el funcionament del cervell, gràcies als treballs de Santiago Ramón y Cajal i amb l’ajut de sistemes de detecció i mesura com el de l’electroencefalografia que va inventar en Hans Berger. Sabem que tenim uns 86 mil milions de neurones, que cada una d’elles es connecta amb milers d’altres, i que grups molt nombrosos de neurones s’activen de manera sincronitzada i rítmica, produint ones que ara sabem captar. Quan dormim profundament i sense somiar, les neurones generen una música latent d’ones delta de baixa freqüència (entre un i quatre Hz o cicles per segon). Però les nostres neurones també ressonen en moltes altres freqüències. Per exemple, quan estem actius, generem ones gamma més ràpides (de 30 a 70 Hz), associades amb la formació de idees, el llenguatge, la memòria i amb la percepció conscient.

El cert és que hem avançat molt, però que encara no sabem res, del nostre cervell. Som com un nen a la platja, que juga amb la sorra i les onades sense ser conscient de la immensitat de l’oceà. En Marcus du Sautoy ens parla de la extraordinària complexitat del cervell humà i diu que el més probable és que els humans mai arribem a entendre’l del tot.

Dic això perquè fa poc vaig llegir una notícia molt bonica. S’ha descobert que el fet de sotmetre ratolins que tenen plaques d’Alzheimer en el seu cervell a flaixos intermitents i rítmics de llum LED durant una estona, redueix dràsticament el nombre d’aquestes plaques. Ho ha descobert un grup de científics del Massachusetts Institute of Technology (MIT), que van trobar que la llum estimulava les cèl·lules a ressonar i destruir les proteïnes nocives que s’acumulen i que provoquen l’aparició de la demència. Això sí, cal que el parpelleig segueixi un ritme de 40 flaixos per segon, perquè així activa aquest tipus concret d’ones gamma. Encara que ni els humans ni les rates podem percebre que es tracta d’una llum formada per una seqüència d’impulsos lumínics (ho veiem com una llum continua, per la persistència de la imatge a la retina), els ulls sí que capten els flaixos, els seus senyals òptics passen al cervell, les neurones s’activen a la mateixa freqüència, i amb les seves ones – el seu “ball” – van trencant les plaques. De fet, ara mateix s’està fent proves en persones malaltes d’Alzheimer, com podeu veure a aquesta noticia del New Scientist i en el vídeo que mostra. La imatge de dalt és justament d’aquest vídeo. Cal dir que s’ha vist que determinades vibracions i sons de la mateixa freqüència de 40 Hz són també útils i trenquen plaques d’Alzheimer. Sembla que l’important és fer ressonar les neurones a la freqüència de 40 Hz, no pas com es fa.

Una prova del limitat que és el nostre coneixement del funcionament del cervell humà i de la immensa complexitat del que encara no sabem són els experiments que ens mostren que la realitat pot ser molt diferent al que creiem que veiem. Un exemple és l’efecte McGurk, que aquí teniu explicat. Estem acostumats a que hi hagi coherència entre les nostres percepcions visual i acústica. Doncs bé, si en algun moment no coincideixen, el nostre cervell ha de decidir. El resultat és que no ens adonem de la discrepància, i que pensem que el real és només una de les dues (normalment la visual). Ho podeu veure i experimentar amb aquest vídeo de la BBC. Conclusió: en molts casos no captem bé la realitat, com ja ens deia Plató. Si això és el que ens passa, voleu dir que ens serà fàcil desentrellar els misteris del nostre propi cervell i entendre allò que realment fa?

Tot plegat m’ha recordat un acudit d’en Randall Munroe que podeu veure aquí i que ordena algunes branques del saber pel seu grau de “puresa”. Els psicòlegs diuen que la sociologia no és més que psicologia aplicada, els bioquímics afirmen que la psicologia no és més que bioquímica aplicada, els químics diuen que la bioquímica és química aplicada, els físics afirmen que la química és en realitat una forma de física aplicada…, i els matemàtics s’ho miren tot de lluny i amb perspectiva. De fet, els experiments del MIT sobre els flaixos de llum i les plaques d’Alzheimer ens demostren que, encara que el nostre coneixement del cervell sigui quasi nul, podem tractar i segurament podrem guarir alteracions i degradacions bioquímiques amb sistemes no invasius només basats en la física. Llum que pot curar l’Alzheimer. Bonic, oi? Podrem algun dia tractar i guarir-nos de la cobdicia humana?

———

Per cert, la Rosa Montero diu que el 80% de les 43.000 empreses multinacionals del món estan controlades per només 737 persones. Diu que com que hi ha un miler d’individus que posseeixen el món, els polítics haurien d’estar de la nostra part, de part de tots els altres ciutadans, per intentar controlar els potentats. Democràcia és això, no el que tenim.

Benestar i dispendi

divendres, 25/05/2018

El darrer número de la revista Scientific American publicava un gràfic que mostra, en una sola imatge, el malament que ho estem fent. És el que teniu aquí al costat, en una imatge que podeu trobar a aquesta pàgina web. Hi podeu veure representats un total de 109 països (encara que l’estudi es va fer amb 151 països, en alguns d’ells mancaven dades). La posició en vertical de cada país mesura la seva qualitat de vida amb un índex que va de zero a onze, mentre que la seva coordenada horitzontal, de zero a set, és el nombre de límits de sostenibilitat que aquest país està sobrepassant. La grandària dels cercles indica la quantitat de gent que hi viu.

Són els resultats d’un treball científic d’investigadors de la Universitat de Leeds, que fa pocs mesos ha publicat la revista Nature. Els 11 factors que s’han escollit per mesurar la qualitat de vida són el grau de nutrició, el sanejament i la netedat, l’esperança de vida, el nivell d’ingressos, l’educació, l’accés a l’energia, el suport social, els drets democràtics, la manca de desigualtat en els ingressos, la taxa d’atur i l’índex subjectiu de satisfacció vital. D’altra banda, els 7 límits de sostenibilitat indicats a l’eix horitzontal mesuren l’ús de recursos minerals, l’ús de recursos marins, la desforestació, l’ús de l’aigua, les emissions d’òxids de nitrogen, les de diòxid de carboni i les de compostos de fòsfor. Tant en el cas dels 11 indicadors de benestar social com en el dels 7 indicadors de la pressió ambiental (relativa als límits biofísics), el que es mesura és si superen el llindar admissible o no a nivell de cada estat. El cercle d’Espanya, per exemple, que es troba a la posició (7,8), ens indica que estem sobrepassant tots els 7 límits de pressió ambiental, mentre que només hem aconseguit 8 dels 11 indicadors de benestar social. El càlcul d’aquests 11+7 indicadors per a cada país s’ha fet de manera rigorosa i en base a estudis previs ja refrendats d’altres equips d’investigació, com podeu veure a l’article científic. A més, totes les dades, classificades per països, són a la web i es poden descarregar. En paraules dels autors, aquest treball és el primer que quantifica la sostenibilitat en l’ús de recursos a nivell nacional i el relaciona amb el grau de satisfacció de les necessitats humanes bàsiques a un total de 151 països del món.

Els investigadors de Leeds han fet a més un bon treball a l’hora de presentar els resultats. En aquesta web trobareu el mateix gràfic de dalt, però interactiu. Podeu consultar qualsevol país a la taula de la dreta, i el gràfic us mostrarà la seva posició en color; si moveu el cursor per damunt dels cercles veureu a més el nom de cada un dels països representats. Ho podeu observar també en aquest mapa del món, si us aneu passejant pels diferents països.

A més de la interfície per a la presentació de resultats, molt encertada, la principal conclusió del treball és que ho estem fent fatal. La zona òptima pel que fa al binomi benestar-dispendi, que seria la propera al (0,11), és totalment buida. No hi ha cap país que satisfaci les necessitats bàsiques dels seus ciutadans amb un nivell d’ús de recursos que sigui globalment sostenible. Quatre dels països amb més població, Índia, la Xina, Rússia i els Estats Units, són a les posicions (1,1), (5,4), (6,3) i (7,9). A més benestar, més depredació, i a l’inrevés: a menys pressió ambiental, menys benestar, com bé ens mostra la Índia.

Una de les preguntes que es fan en Daniel W. O’Neill i el seu equip és quin grau d’ús dels recursos biofísics és necessari per a satisfer les necessitats bàsiques de les persones, i si aquest ús de recursos es pot estendre a totes les persones sense superar els límits planetaris que ara ja són crítics. La conclusió, aquesta sí, ens obre una escletxa d’esperança. L’equip de Daniel W. O’Neill conclou que és possible satisfer les necessitats físiques (és a dir, la nutrició, el sanejament, l’accés a l’energia i l’eliminació de la pobresa per sota del llindar dels 1,90 dòlars diaris) de tots els 7.000 milions de persones del món amb un nivell d’ús dels recursos planetaris que no sobrepassi els límits de sostenibilitat del planeta. No obstant això, altres objectius més qualitatius com la satisfacció vital, l’esperança de vida saludable i la qualitat democràtica poden ser més difícils d’assolir.

——

Per cert, en Gaspar Hernández diu que els homes i dones ens hem de feminitzar, i que per fer-ho hem de practicar més l’empatia, la compassió i la cura, a la vegada que no ens hem d’avergonyir de les nostres fragilitats.

Gaia, els estels i nosaltres

divendres, 18/05/2018

Mireu-vos el dit índex amb el braç estès. Tanqueu primer un ull i després l’altre. Com és ben conegut, l’efecte de la paral·laxi fa que la posició del nostre dit en relació a la paret o al paisatge del fons sigui diferent en un i altre cas. La paral·laxi, aquest fenomen de canvi de posició relativa d’allò que és proper respecte el que és més llunyà, és el que va fer que l’evolució ens dissenyés amb dos ulls una mica separats per a que el cervell pogués triangular i percebre les distàncies.

La imatge d’aquí al costat ens mostra el mateix, però a escala planetària. La podeu veure a aquesta pàgina web. El fons d’estels és únic, però les quatre imatges de la lluna han estat preses (totes elles al mateix instant) des del Pol Nord (la de sota), del Pol Sud (la de dalt) i des de dos punts oposats de l’Equador (les del mig). Sabent el radi de la Terra i suposant que els estels del fons són molt més lluny, a partir d’aquesta imatge i amb una senzilla formula trigonomètrica és fàcil calcular la distància de la lluna a nosaltres.

La missió europea Gaia està fent el mateix però a escala més gran. La nau Gaia gira al voltant del Sol en una òrbita en el punt Lagrangià L2, a 1,5 milions de quilòmetres de la Terra. Un bon lloc amb un entorn de radiació baix i alta estabilitat tèrmica, que a més permet fotografiar els diferents estels de la Via Làctia des de dues posicions, en situacions oposades de l’òrbita terrestre i de la seva òrbita, separats uns 303 milions de quilòmetres. Encara que les fotos les fa en moments diferents de l’any i mentre va orbitant al voltant de la Terra, és com si Gaia tingués dos ulls separats més de 300 milions de quilòmetres. És cert que això tampoc és tan nou, i que Bessel, l’any 1838, ja va descobrir la paral·laxi basada en l’òrbita de la Terra era una bona manera de calcular la nostra distància als estels més propers. L’interessant de la nau Gaia són moltes més coses, de les quals voldria fer èmfasi en dues. El telescopi de Gaia pot mesurar les paral·laxis dels estels de magnitud entre 3 i 13 amb una precisió rècord de 6,7 milionèsimes de segon d’arc. En paraules més planeres, podria distingir una moneda d’un euro a la superfície de la Lluna. Increïble, oi? Per aconseguir-ho, li cal un grau extrem d’estabilitat i poder fer fotografies sense cap pertorbació per part de la Terra, de la seva atmosfera i del Sol. Gaia utilitza sistemes de micro-propulsió amb gas fred, molt sofisticats, per mantenir els telescopis girant a un ritme constant i garantir la precisió requerida. D’altra banda, Gaia usa informació altament redundant. Durant 5 anys ha observat més de mil milions d’estels, obtenint 70 unes fotos de cada un d’ells. Això equival a haver fotografiat una mitjana de 70 milions d’objectes cada dia, amb uns 40 GigaBytes d’informació diaris que ens va enviant. Total: 73 TeraBytes d’informació.

El resultat és un nou mapa galàctic tridimensional que conté les posicions de 1.700 milions d’estels juntament amb les posicions, moviment i característiques lumíniques de 1.300 milions d’estels de la Via Làctia. Tota la informació és a la web de la ESA. Són les dades recollides al llarg de 22 mesos de funcionament. L’actual mapa galàctic supera àmpliament, en nombre d’estels i precisió, el catàleg anterior, que només tenia dos milions d’estels. Gaia té tres metres i mig d’amplada, si no comptem el para-sol de 10 metres. El seu sensor, de tecnologia CCD com de les nostres càmeres digitals, és de mil milions de píxels amb una superfície total de 0,38 metres quadrats.

Aquí podeu veure el mapa de la ESA amb els 1.700 milions d’estels. I aquest és el vídeo d’un viatge imaginari que surt del nostre planeta i que s’allunya fins veure una bona perspectiva de tota la nostra galàxia, la Via Làctia. El vídeo mostra simultàniament les primeres dades enviades per Gaia (a l’esquerra) i les que ara tenim, molt més completes, a la dreta. El viatge comença mirant enrere cap al Sol, allunyant-se, i viatjant entre estels fins sortir de la galàxia.

Tal vegada aquest vídeo ens pugui ajudar una mica a entendre la nostra essència ínfima i efímera, a fer un somriure escèptic quan escoltem i llegim les vanes pretensions dels qui es creuen poderosos, i a exigir-los que respectin els drets i la dignitat de tots els altres, ara i aquí.

Per cert, l’Emilio Lledó diu que, estudiant la literatura grega, va descobrir que la felicitat era inicialment “tenir més”, tenir terres, cases, esclaus, àmfores, vestits. Tot això servia per assegurar la sempre fràgil i inestable existència: el “benestar” era absència d’angoixa i preocupació pel “bentenir”. Més tard, amb les paraules que van poder descobrir i descriure un univers més abstracte, el “benestar” es va transformar en “benser”, amb descripcions de l’equilibri, la sensatesa i l’alegria que surt dels territoris inescrutats del Jo. Però l’Emilio Lledó diu que el sentiment d’equilibri i assossec interior està contínuament amenaçat, i que la felicitat és impossible si la mirada descobreix la malaltia social i la corrupció que destrueix la vida col·lectiva.

Allò que no sabrem

divendres, 27/04/2018

El meu llibre de Sant Jordi, que estic llegint, ha estat el darrer d’en Marcus du Sautoy. Aquest matemàtic, que ha heretat de Richard Dawkins la càtedra Simonyi per a la comprensió pública de la ciència de la Universitat d’Oxford, el trobo captivador.

La imatge d’aquí al costat és dels anells de Saturn. Ens la va enviar la sonda Cassini, i la podeu trobar, amb moltes més, en aquesta pàgina web. Sempre m’ha admirat la capacitat humana d’exploració. Com que els nostres ulls no poden apreciar els detalls de planetes llunyans com Júpiter, Saturn, Neptú o Plutó i com que els nostres telescopis són també limitats, hem estat capaços d’enviar ulls artificials que capten les imatges que volem veure i ens les envien. Que això ho estiguem fent només 500 anys després dels primers navegants que van donar la volta al món, és realment increïble. En el seu llibre, però, en Marcus du Sautoy ens fa caure del pedestal i ens col·loca de peus a terra. Reconeix que la ciència ens ha permès descriure l’Univers força bé, i que el seu èxit a l’hora de fer prediccions (dels eclipsis, del temps, de l’evolució de les nostres malalties) ens demostra contínuament que ens és útil. Ara bé, la ciència no pot representar la realitat. Si ens en servim és perquè no tenim cap opció alternativa. Però la realitat, no la coneixerem mai.

Després de Kant, hem hagut d’acceptar la limitació essencial del nostre coneixement i la incognoscibilitat de les coses en si mateixes, perquè tot el que sabem es basa en la nostra percepció a través dels nostres sentits. Tot el coneixement humà queda filtrat per les ulleres que portem posades per a mirar l’univers. En Marcus du Sautoy es pregunta què passaria si no tinguéssim ni ulls ni cèl·lules específiques per a captar la llum i la radiació electromagnètica. No hauríem vist mai els estels, i potser no sabríem que som en un planeta insignificant en un lloc perdut de l’Univers. Només podem saber coses de la realitat que captem a travès dels nostres sentits, però no podrem saber mai com és la realitat en sí mateixa. Sospitem que l’Univers conté una gran quantitat de matèria fosca, però no la veiem i, com que no sabem què és, tampoc podem dissenyar ulls artificials per a que ens la mostrin. Si existeix, és ben fosca. I, com diu en Sautoy al seu llibre, els estudis que estudien la consciència humana suggereixen que hi ha límits que no podem ni podrem traspassar. Com deia en Niels Bohr: és erroni pensar que la finalitat de la física és descobrir com és la natura, perquè la física s’ocupa només del que nosaltres podem dir sobre la natura.

En una entrevista recent, i com a bon matemàtic, en Marcus du Sautoy es queixa que mai li han donat una definició precisa de Déu. Per això en va buscar una, i finalment la va trobar en els escrits del teòleg d’Oxford Herbert McCabe: “Déu és l’afirmació que hi ha una pregunta sense resposta sobre l’Univers”. És una afirmació espiritual i transcendent, que ens col·loca al bell mig de les nostres limitacions. És el centre de tot, la constatació que els humans mai podrem saber la resposta a les preguntes essencials: Per què hi som? Per què hi ha coses en lloc del no-res? En Marcus du Sautoy continua dient que tot el demés ens ho hem inventat. I ho diu ben convençut: “Les religions han comès idolatria i han atribuït a aquesta idea abstracta propietats que mai hauria d’haver tingut”.

Hi ha qui creu que la ciència i la tecnologia ens faran super-humans i que fins i tot podrem arribar a ser immortals, sense veure que a pesar de tot, continuem tenint la mateixa cobdícia, vanitat i afany il·lusori de poder que els nostres avantpassats de fa deu mil anys. Els científics no creuen en aquests grans castells de sorra que sovint provenen d’altres àmbits, sino que dubten i parlen mesurant molt bé les seves paraules. És per això que la ciència dona lloc a ben pocs titulars, als diaris. En Michael Shermer sí que en dona un, quan cita els cantants de rock Zager i Evans i diu que les coses importants passaran entre els anys 2525 i 9595. És una bona proposta de resposta. Quan us preguntin quan creieu que les màquines seran intel·ligents, quan entendrem el per què de la nostra consciència, o quan penseu que la tecnologia ens farà super-humans, podeu contestar que el més probable és que sigui l’any 9595.

———

Per cert, en Joan Majó diu que qui emmagatzema dades personals pot, si es tracta d’una empresa, obtenir-ne un fort valor econòmic. I si es tracta d’un poder polític, un gran augment de control ciutadà. Diu que cal reglamentar millor per tal d’evitar que la forma de recollir o utilitzar les dades traspassi innecessàriament les fronteres de la privacitat.

La cota de neu

divendres, 13/04/2018

Fa poc, tornant de la Cerdanya, vaig anar per la Collada de Toses. Volia gaudir, pausadament, de la natura. Em vaig arriscar, perquè el pronòstic era de nevades, amb una cota de neu de 1.700 metres. Va ser molt bonic, tret de cinc minuts. Anava plovent, en un entorn meravellós, fins que justament vaig arribar a la cota dels 1.700. En pocs metres, la pluja es va convertir en neu, i, amb molta precaució, vaig arribar fins la collada cent metres més amunt, on tot era nevat i on el gruix de neu, d’uns 10 centímetres, no feia fàcil la circulació. Poc a poc, vaig començar a baixar per la vessant del Ripollès mentre per sort comprovava que, uns cent metres més avall, tot tornava a la normalitat.

Tot plegat em va fer pensar en l’estratificació en capes de la troposfera, aquesta zona habitable de l’atmosfera que té un gruix d’uns 14 a 17 quilòmetres i que concentra quasi tot el vapor d’aigua i el 80% del total de la massa atmosfèrica. La troposfera és molt dinàmica, amb vents horitzontals i corrents verticals d’origen convectiu i orogràfic. Però l’aire que puja es va refredant, i el resultat és que la temperatura va baixant entre 6 i 10 graus cada 1000 metres d’alçada. En altres paraules, la temperatura als cims dels Pirineus és sempre entre 20 i 30 graus més baixa que la dels pobles de la costa. Per això, els cims es mantenen nevats molts mesos.

De totes maneres, quan l’atmosfera s’estabilitza en sentit vertical, les diferències tèrmiques i de densitat fan que la troposfera (i això ho podem veure molt bé a la seva part baixa, que és on són la majoria de núvols) es divideixi en capes, una damunt de l’altra. Les més fredes, dalt, i les més calentes, prop nostre, si no hi ha inversió tèrmica. El gradient tèrmic és el causant de la cota de neu, perquè la condensació que cau en forma de flocs neu dels núvols, quan travessa cotes amb temperatures que ja són per damunt del zero es converteix en gotes de pluja. I, cosa interessant, aquesta cota és molt regular i horitzontal: és com un gran llençol estès a mitja alçada, pla i invisible, que separa la neu de la pluja. És gràcies a aquesta regularitat i al seu caràcter horitzontal, que podem parlar del concepte de cota de neu.

Us heu fixat que moltes vegades, com a la imatge de dalt, els núvols són plans per la part de sota? És perquè suren damunt la capa inferior, com l’escuma ho fa damunt l’aigua. Si poseu una mica de detergent en un got d’aigua, remeneu per fer escuma i ho deixeu reposar una mica, la imatge que veureu des del costat serà molt semblant a la dels núvols: Una capa d’aigua a sota, i l’escuma que sura al damunt de l’aigua mentre s’endinsa a la capa superior, de menor densitat, que en el nostre cas és d’aire. És un fenomen que podeu observar quan hi ha estrat-cúmuls, nimbostratus o altocúmulus.

I per què, aquesta separació entre capes, és quasi sempre horitzontal? De fet, sabem que tot és degut a la gravetat i a les lleis de la física, perquè (de manera semblant al que passa en els vasos comunicants), la superfície superior de tot fluid que en té un altre al damunt tendeix a quedar-se horitzontal: l’estat de mínima energia. Veiem núvols plans per sota per la mateixa raó que la superfície dels llacs és horitzontal.

La imatge de sota mostra un experiment divertit que podeu fer amb aigua, sal, oli i un ou. Poseu molta sal en un got gran d’aigua, i poseu-hi un ou. Si remeneu, l’aigua anirà absorbint la sal, la seva densitat anirà pujant, i en un cert moment l’ou començarà a surar com fan els núvols a la capa inferior de l’atmosfera. Afegiu ara oli, i veureu que l’ou es queda surant entre dues capes. Perquè damunt la terra ferma, tot són capes de fluids, sigui aigua salada, aigua dolça, aire més dens o aire menys dens.

——

Per cert, en Sergi Pàmies parla de Felipe Gonzàlez i el cita amb una frase que Pàmies diu que és el súmmum de la prepotència condescendent perquè mostra el menyspreu col·lectiu als seus, aplicada a en Miquel Iceta: “Mandé que le dijeran”.

El gran i el petit: potència i eficiència

divendres, 6/04/2018

L’any passat vaig assistir a una conferència d’en Bruno Levy en el marc d’un congrés científic d’informàtica. La seva xerrada va començar amb una referència a un dels ordinadors que va contribuir a revolucionar la informàtica ara fa uns 30 anys: el mític Macintosh 128K, anomenat així pels seus 128 KBytes de memòria RAM, amb disquetera de 3 polsades i mitja (disquets de 400KB de capacitat que permetien guardar una única foto de baixa resolució de les d’ara), pantalla monocromàtica de 512 x 342 píxels i que ens oferia, per damunt de tot, un sistema operatiu i una interfície absolutament intuïtiva, basada en icones, finestres i ratolí, que ara encara utilitzem. El recordo molt bé, perquè em va acompanyar tot un any mentre preparava la memòria per a concursar a la universitat. Per tenir una idea del que era aquell Macintosh, només cal fer una divisió: la capacitat de la seva memòria era cent vint-i-vuit mil vegades més petita que la dels nostres mòbils actuals de 16 GB.

Doncs bé, en Bruno Levy explica que aquell Macintosh, que havia de carregar cada vegada el sistema operatiu a partir d’un disquet específic de sistema, quan el connectaves, tardava 20 segons en estar llest i preparat per a interactuar amb les persones. En canvi, comenta que el seu portàtil actual, un milió de vegades més potent pel que fa a potència de càlcul, tarda entre 2 i 3 minuts. Comenta que, els ordinadors actuals (per exemple de 3GHz i de tipus quadcore), en 20 segons poden fer un total de 240 mil milions d’instruccions, i es pregunta què està fent el seu portàtil durant aquests inacabables dos minuts o més. Acaba dient que, si qualsevol ordinador actual no pot completar en 20 segons tot el necessari per a estar a punt, és que segurament hi ha un problema en el disseny del software. Podria ser més categòric, però en Bruno és prudent.

Parlem una mica d’eines de diagnosi en medicina. Els sistemes anomenats d’imatge mèdica, els aparells de TAC (tomografia axial per computador) i de ressonància, acaben generant imatges molt precises del que hi ha dins nostre que cada cop es fan més imprescindibles per a la diagnosi. Els algorismes de reconstrucció 3D i de visualització de volum dels darrers anys ens ofereixen la possibilitat d’entrar virtualment dins el cos dels pacients per a que els experts mèdics puguin veure, entendre i acabar sabent què passa. Doncs bé, amb aquests algorismes passa el contrari del que explicava en Bruno Levy. Fins fa poc, les visualitzacions de volum requerien ordinadors força potents de sobretaula. Després, les hem pogut ja veure als portàtils. I ara, les comencem a tenir directament als telèfons mòbils. Ho podeu veure, per exemple, en aquest vídeo (que mostra els resultats d’aquest article científic) i que és d’on he tret la imatge de dalt. En aquest cas, per sort per a tothom, estem anant del gran al petit, de l’ordinador potent al dispositiu que portem a la butxaca. Un mòbil és un ordinador, però de potència clarament inferior a la dels ordinadors de sobretaula. Per això, aquestes aplicacions per a mòbil han de ser fortament sofisticades i eficients, perquè passar del petit a màquines més potents és molt més fàcil que passar d’ordinadors d’altes prestacions a dispositius limitats per la seva mida i pel consum energètic. Quin és el truc? La solució es basa, entre altres coses, en l’ús algorismes mandrosos.

Les noves eines mèdiques per a la diagnosi basada en la visualització de volum en mòbils són a la base de la telemedicina i dels mitjans que aquesta ens pot oferir en zones rurals i força aïllades, on viuen més de dos mil milions de persones al món. Perquè són eines que permetran que els metges rurals puguin comunicar-se amb equips mèdics dels hospitals, fent sessions clíniques a distància en les que uns i altres podran veure les mateixes imatges mèdiques dels pacients, analitzar-les i discutir-les conjuntament, tot arribant a entendre els possibles problemes per a fer finalment una bona diagnosi.

Tot ho tenim massa fàcil, i això facilita que acabem agafant mal hàbits. No cal que ens preocupem gaire si tenim grans mitjans i ordinadors potents. Però moltes de les solucions que ens calen per ajudar tothom i per intentar assolir els objectius de desenvolupament sostenible 2030 de la ONU passen per sistemes eficients que puguin funcionar en dispositius d’ús global: els telèfons mòbils.

——

Per cert, en Bru Rovira diu que els temes estrella que tenen a veure amb l’emigració i la inseguretat són els que van decantant la balança cap al client-votant de dretes, clients que diu que són els que estan guanyant per noquejada la guerra bruta de la democràcia.

La geometria de l’ordre

divendres, 23/03/2018

Anem per una carretera o camí, en un trajecte tranquil perquè volem gaudir del paisatge. Durant el trajecte, anem passant pobles. No us dic res de nou si afirmo que podem ordenar els pobles en base a quan els anem veient. Sortim del primer poble, en passem uns quants, i arribem al darrer, que és el nostre destí.

Aquest ordre, però, desapareix quan mirem els pobles al mapa, perquè ara hi ha moltíssimes maneres d’ordenar-los. Els podem ordenar per la seva latitud geogràfica, per la seva alçada sobre el nivell del mar, per la seva proximitat al mar o a una determinada ciutat, i per moltes altres variables no geogràfiques com la seva població o el nombre de bancs per seure. En les dues dimensions d’un mapa no hi ha cap ordre objectiu; en canvi, aquest ordre apareix quan caminem o anem en cotxe: les carreteres i camins ordenen els pobles. De fet, la geometria ens ho explica ben clar: tot allò que és representable al llarg d’una línia (com els pobles al llarg d’un camí o les baules en una cadena) és ordenable, mentre que allò que trobem en espais 2D, 3D o de n dimensions, és intrínsecament no ordenable. Podem ordenar-ho, és clar, però per a fer-ho ens cal afegir criteris que són extrínsecs respecte la seva posició. Aquesta multiplicitat d’ordenacions té però els seus avantatges: l’ajuntament d’un determinat poble sempre podrà trobar un criteri adient tal que, quan l’apliquin, el poble quedi el primer en l’ordenació de tots els de la seva regió o comarca. I aquí és on surten també algunes dificultats, perquè tothom acaba sent el primer en alguna cosa.

Pensem en un altre exemple. M’agradaria llogar una caseta a un poble, però no sé si tindré prou Sol a la terrassa, a l’hivern. El problema és que hi ha altres cases que no sé si em faran ombra. I la solució no és evident, perquè el problema és 3D (la posició del Sol al llarg de l’any ho és) i com acabem de veure, en aquest cas no hi ha cap ordenació intrínseca. Doncs bé, hi ha una solució elegant que ens va donar, ara fa 38 anys, l’equip d’en Henry Fuchs: podem construir un arbre de partició binària de l’espai. Perquè els arbres de partició binària de l’espai (vegeu la nota al final) estructuren la informació, sigui 2D, 3D o nD, de tal manera que contenen, de manera implícita, una infinitat de possibles ordenacions. Segons com els “llegim”, aquests arbres ens donen una ordenació o una altra. Són pots d’ordenació condensada multidimensional, estructures que ens guarden la geometria de l’ordre a l’espai. La seva bellesa, al meu entendre, és una mostra més de la poesia de l?univers.

———

Per cert, en Josep Ramoneda, parlant de les penes que demana la fiscalia Italiana als càrrecs de l’ONG Open Arms, diu que mai ningú pot ser reprimit per ajudar qui es troba en perill, i que en una societat democràtica la llei té un límit, que són els drets fonamentals de les persones. Diu també que quan aquests drets es violen, la democràcia es degrada, i que estem veient com Europa s’enfonsa al mar, per a més glòria del despotisme. Quan ho llegeixo, penso que a Europa han desaparegut l’ordre i la seva geometria.

———

NOTA: La partició binària de l’espai binari (BSP) és una manera d’estructurar un determinat espai inicial convex (per exemple, una regió cúbica) que es basa en subdividir-lo recursivament en subconjunts convexos en base a plans. Aquesta subdivisió dóna lloc a una representació dels objectes dins de l’espai basada en una estructura de dades d’arbre anomenada arbre BSP. Després d’una idea inicial de Schumacker i els seus col·laboradors l’any 1969, la proposta dels arbres BSP va ser formulada i desenvolupada en detall a partir de l’any 1980 per Henry Fuchs i els seus estudiants.

La idea és ben simple. Pensem en l’exemple de les cases i les ombres. Comencem amb una regió inicial que pot ser una capsa imaginària (convexa) que contingui, en 3D, el conjunt de totes les cases que volem estudiar. Escollim una façana d’un dels edificis més o menys centrats a la capsa inicial, i designem el seu pla P com a primer pla discriminant. Aquest pla separa i classifica totes les cases en dos grups: les que es troben a la part de davant del pla (en direcció cap enfora de la façana que ha donat lloc a aquest pla P) i aquelles que són a la seva banda del darrera. Pot donar-se el cas, és clar, que alguna casa no quedi ni al seu davant ni al darrera, sino que quedi tallada per P. En aquest cas, dividirem la casa en dues parts de manera que cada una d’elles quedi ben classificada, davant o darrera de P (de fet, una de les coses que ha de tenir en compte l’algorisme que escull el pla discriminant P, a més de subdividir el conjunt de cases en dos subconjunts acceptablement equilibrats, és el d’intentar que talli el menor nombre possible d’altres cases – en base a heurístiques que prioritzin les façanes de carrers llargs i rectes, per exemple -). Un cop hem trobat el pla discriminant P, el conjunt inicial de cases ens haurà quedat classificat en dos subconjunts: el de les que són davant de P i el de les que són al seu darrera. I cada un d’aquests dos subconjunts correspon a una regió convexa de l’espai, sub-regions R1 i R2 que provenen del fet de tallar, amb el pla P, la capsa convexa inicial. A partir d’ara, l’algorisme continua tractant, per separat, cada una d’aquestes dues sub-regions, fent-hi el mateix: cerca del pla discriminant i subdivisió del conjunt de cases entre les que són al seu davant i les que es troben al seu darrera. Per a R1, trobarà un pla P1 que la dividirà en dues sub-regions R11 i R12.  Per a R2, trobarà un pla P2 que la dividirà en dues sub-regions R21 i R22. Evidentment, P1 només actua dins de R1 i P2 només ho fa dins de R2. El procés es repeteix fins que a cada regió només hi hagi, per exemple, una casa.

L’interessant d’aquesta subdivisió recursiva de l’espai és que estructura la informació, permet la seva classificació, l’agrupa, és vàlida en 2D, en 3D i en qualsevol espai de dimensió superior nD, i a més incorpora de manera automàtica una infinitat de possibles ordenacions posteriors. Podem estructurar i organitzar a l’espai els pobles d’una comarca, les regions del cervell d’una persona o informació multidimensional d’una comarca que incorpori dades geogràfiques i de població, riquesa, salut i altres. Tot queda representat en regions polièdriques convexes que podem accedir de manera trivial tot movent-nos per un arbre de plans discriminants.

Tornem a l’exemple de les cases el Sol, les façanes i les ombres. Tindré sol a la terrassa d’aquella casa que m’agrada, el dia 10 de gener a les 4 de la tarda? L’únic que he de fer és calcular la posició (de fet, parlant amb propietat, el que he de calcular és el vector que defineix l’orientació) del Sol aquest dia a aquesta hora. Un cop sé on serà el Sol en aquest moment, comparo la seva posició amb el primer pla discriminant P. Si diem PS a la banda de P on és el Sol, i PN a l’altra banda, és evident que les cases de PS poden fer ombra a les de de PN, però que, en canvi, cap casa de PN pot fer ombra a les cases de PS. Si separo les cases en dos grups i poso primer les de PN i després les de PS, ja he fet un primer pas cap a l’ordre. L’únic que he de fer ara és repetir el procés amb els plans discriminants de PN i de PS: miro on és el Sol en relació a aquests plans i separo les cases, deixant primer les que queden separades del Sol pel pla i després les altres. Al final, aquest algorisme m’haurà generat un ordre parcial (anomenat també topològic) de manera que la primera casa en aquesta llista final ordenada pot tenir ombra de qualsevol de les altres, mentre que la darrera segur que no té ombres; per a qualsevol casa del mig de la llista, les d’abans no li poden fer ombra però les posteriors, sí. L’interessant de tot plegat és que l’ordre que obtenim depèn de la posició del Sol. L’arbre conté tots els ordres possibles de manera implícita, per a totes les possibles posicions del Sol al llarg de l’any, de manera que permet que els càlculs d’ombres siguin més eficients i ràpids.

Versemblança, comprensió i actuació

divendres, 16/03/2018

Diuen que la versemblança és la qualitat d’un fet o enunciat de resultar creïble i coherent en el seu marc. I, encara que el seu ús primordial és en el camp de la ficció, el concepte ens és cada vegada més útil a la vida real i quotidiana, en aquest món de veritats paral·leles que tenim.

La versemblança d’una determinada frase o afirmació es pot mesurar amb la probabilitat que té de ser certa, i això es pot fer en base a una anàlisi de la seva autoria, a contrastar-la amb altres fonts i a la cerca de fets objectius que permetin refrendar-la o rebutjar-la. Aquest procés d’assignació de probabilitats a les frases que ens arriben, si és objectiu i rigorós, donarà caràcter científic als nostres resultats. Ara bé, justament per això, molt sovint no és possible afinar en l’assignació d’una probabilitat concreta al fet que ens ocupa i, com veurem tot seguit, ens hem de conformar amb una classificació en categories o graus de versemblança. És quelcom que no desllueix en absolut els resultats, perquè voler anar més enllà seria entrar ja en el món d’allò que és subjectiu i no constatable.

FactCheck és un projecte del Centre de polítiques públiques Annenberg de la Universitat de Pennsilvània. En ell, segueixen amb precisió el que diuen els principals actors polítics dels Estats Units en forma d’anuncis televisius, debats, intervencions, entrevistes i comunicats de premsa. El seu objectiu és aplicar les millors pràctiques del periodisme i del món científic i acadèmic per tal d’augmentar el coneixement i el grau de comprensió objectiva de la gent. Un exemple: El secretari del departament d’interior dels Estats Units, Ryan Zinke, va afirmar fa poc que la petjada de carboni de l’energia eòlica és significativa, i que “tot tipus d’energia té conseqüències [climàtiques]”. Però la versemblança d’aquesta frase és nul·la, segons aquest estudi de FactCheck. L’estudi cita Garvin A. Heath, científic del Laboratori Nacional d’Energies Renovables dels USA, que va concloure (després d’una revisió de la literatura científica) que l’energia eòlica produeix al voltant d’11 grams de diòxid de carboni per quilowatt-hora d’electricitat generada. El carbó, en canvi, genera uns 980 grams de CO2/kWh i el gas natural aproximadament uns 465 grams de CO2/kWh. En altres paraules, la petjada de carboni del carbó és gairebé 90 vegades més gran que la del vent, i la del gas natural és més de 40 vegades més gran. L’estudi de FactCheck conté dades interessants sobre el valor de la petjada de carboni de diferents fonts d’energia que ara utilitzem, valors que inclouen tot el cicle de vida dels generadors i centrals, des de la seva fabricació fins el seu ús i reciclatge.

Tenim altres organitzacions que es dediquen a analitzar, en base a fets, el que ens diuen els polítics, les empreses i els mitjans de comunicació, com OpenSecrets, PolitiFact i Snopes. La primera fa un examen diari de les indústries, organitzacions i persones que intenten influir en el procés democràtic de les societats (sobretot la nord-americana) amb mecanismes antidemocràtics basats en el poder econòmic. Les dues darreres, en canvi, analitzen diàriament la versemblança de noticies d’actualitat, classificant-les en certes, bàsicament certes, mitjanament certes, bàsicament falses, falses i vergonyosament falses (“pants on fire“). Snopes, per exemple, analitza una frase atribuïda a la NASA segons la qual “la combustió de combustibles fòssils refreda el planeta” i la classifica com a falsa, mentre que PolitiFact quantifica cada dia diverses frases de polítics amb el seu mesurador de grau de certesa.

“Les activitats humanes provoquen danys que sovint són irreversibles en el medi ambient i en recursos crítics, i moltes de les nostres pràctiques actuals posen en greu risc el futur que desitgem per a la societat humana i els regnes vegetal i animal, de manera que poden acabar alterant el món vivent. És molt urgent fer canvis fonamentals per tal d’evitar la col·lisió a la que ens estem dirigint […] L’èxit d’aquest esforç mundial requerirà però una gran reducció de la violència i de la guerra. Els recursos dedicats actualment a preparar i fer les guerres, que ascendeixen a més d’un bilió de dòlars anuals, seran molt necessaris per les noves tasques que hem de fer, i hauríem de desviar-los per tant cap als nous reptes.”. Aquesta és una afirmació que crec que es pot qualificar com a mínim de “bàsicament certa”, i que a més ens ajuda a la comprensió del que passa al món. Baso la meva qualificació en el fet que ho van dir uns 1.700 científics l’any 1992 (incloent la majoria de premis Nobel en ciències vius en aquell moment) i ens ho han repetit ara fa pocs mesos 15.372 científics de 184 països en un article a la revista científica Bioscience.

L’èxit d’aquest esforç mundial requerirà però una gran reducció de la violència i de la guerra, com ens diuen. Perquè, com bé ens diuen, la despesa militar és al centre de tots els conflictes armats, al centre de les desigualtats mundials, i al centre d’aquest desinterès per evitar l’escalfament global. Per què no fem res, a pesar de totes les advertències?

L’anàlisi probabilístic de la versemblança ens porta a la comprensió, i aquesta ens ajuda a tenir objectius més sòlids i a saber actuar en conseqüència.

La imatge de dalt és de la campanya internacional “March for Science“.

———

Per cert, uns quants estem promovent una declaració de membres de la comunitat STEM a nivell internacional (científics, tecnòlegs, enginyers i matemàtics) a favor d’una reducció de la despesa militar a tot el món com a mesura per combatre d’una vegada l’escalfament global. La podeu llegir (i signar) aquí. És part de la campanya GCOMS que promou l’Oficina Internacional per la Pau.

Allò que és geomètric

divendres, 9/03/2018

Què és geomètric, i què no ho és? Si poseu “pintura geomètrica” en un cercador, us trobarà, a la web, fotos com la de dalt de la imatge, que tots veiem com una composició geomètrica. És un conjunt simple, format per superposició de figures quasi-rectangulars de diversos colors. Jo diria que la seva característica fonamental no és el fet de ser geomètric, sino la seva bidimensionalitat.

Mireu en canvi el quadre de baix, d’Edward Hopper, que és un exemple paradigmàtic del caràcter geomètric tridimensional de tot el que ens envolta. Hi podem veure les ombres degudes a l’orientació local de la superfície del terreny, que permeten deduir la posició del Sol, dalt a l’esquerra però no molt alta; les siluetes (aquells punts amb vector normal perpendicular a la direcció que els connectava amb l’ull de Hopper), les curvatures i plecs del terreny, les zones de curvatura Gaussiana positiva o negativa, algunes zones localment desenvolupables i fins i tot planes… Poca cosa es pot dir del caràcter geomètric del quadre de dalt, mentre que es podria escriure tot un llibre sobre la poesia que traspua l’obra de Hopper.

Hi ha un fet cultural força trist: no estem gaire preparats per a gaudir de la bellesa de les formes 3D, excepte, això sí, les humanes. Si ens demanen que mostrem alguna cosa geomètrica, és força probable que agafem un llapis i fem un dibuix 2D amb traços rectes i uns quants angles. Deu ser per això que els escultors són més escassos que els pintors i dibuixants.

Al món i la natura hi ha molt poques rectes. La geometria, aquesta ciència de la mesura del món que hem creat, ha de tenir eines per estudiar i entendre totes les formes corbades que ens envolten. La separació entre corbes i rectes és la que distingeix el món natural de l’artificial, perquè les rectes les vam inventar els humans. Van ser les rectes dels temples inques, egipcis, maies i babilònics, les que van inspirar Euclides quan, en un exercici d’abstracció, les va imaginar com continuació infinita del camí més curt que uneix dos punts donats.

I no es por parlar de geometria, de la geometria de veritat del món natural, sense parlar de Carl Friedrich Gauss. Gauss va ser un geni. Es diu que, als tres anys, va corregir un error en els càlculs financers del seu pare. I als set anys, a l’escola, va descobrir la formula per a calcular la suma d’una progressió aritmètica. De jove, mentre feia de cartògraf, va crear i escriure tota la disciplina que ara es coneix amb el nom de geometria diferencial, junt amb el concepte de curvatura de Gauss que porta el seu nom. El seu descobriment que les característiques de curvatura d’una superfície es poden deduir de manera completa només mesurant angles i distàncies i sense “mirar-la des de fora” és el que ara ens permet validar experimentalment la curvatura de l’espai que va plantejar Einstein a la seva teoria de la relativitat general, i la que ens ajuda a gaudir de tots els matisos corbats quan mirem el meravellós quadre de Hopper.

Tot és geometria. La nostra realitat geomètrica, tan similar a la dels altres animals, ens ajuda a entendre que som natura i que som geometria. Tenim una forma exterior quasi-simètrica, amb un pla de simetria que separa dreta i esquerra que fa que les nostres mans, en lloc de idèntiques, siguin enantiomorfes. La similitud en la disposició dels nucleòtids al llarg de l’hèlix de l’ADN (tot un prodigi geomètric absolutament tridimensional) fa que tots els humans siguem essencialment similars, i ens explica, com molt bé va fer Albert Einstein, que totes les persones que habitem el món som iguals pel que fa als nostres drets. Acabo amb tres frases que se li atribueixen: “Hi ha dues maneres de mirar la vida: creure que els miracles no existeixen o creure que tot és un miracle”, “El meu ideal polític és la democràcia. Que es respecti tothom com a individu i cap persona sigui idolatrada”, i “La paraula progrés no té cap sentit mentre hi hagi nens infeliços”.

Per cert, avui acabo amb una imatge (geomètrica, també), en comptes d’una cita: