Entrades amb l'etiqueta ‘abstracció’

Allò que és geomètric

divendres, 9/03/2018

Què és geomètric, i què no ho és? Si poseu “pintura geomètrica” en un cercador, us trobarà, a la web, fotos com la de dalt de la imatge, que tots veiem com una composició geomètrica. És un conjunt simple, format per superposició de figures quasi-rectangulars de diversos colors. Jo diria que la seva característica fonamental no és el fet de ser geomètric, sino la seva bidimensionalitat.

Mireu en canvi el quadre de baix, d’Edward Hopper, que és un exemple paradigmàtic del caràcter geomètric tridimensional de tot el que ens envolta. Hi podem veure les ombres degudes a l’orientació local de la superfície del terreny, que permeten deduir la posició del Sol, dalt a l’esquerra però no molt alta; les siluetes (aquells punts amb vector normal perpendicular a la direcció que els connectava amb l’ull de Hopper), les curvatures i plecs del terreny, les zones de curvatura Gaussiana positiva o negativa, algunes zones localment desenvolupables i fins i tot planes… Poca cosa es pot dir del caràcter geomètric del quadre de dalt, mentre que es podria escriure tot un llibre sobre la poesia que traspua l’obra de Hopper.

Hi ha un fet cultural força trist: no estem gaire preparats per a gaudir de la bellesa de les formes 3D, excepte, això sí, les humanes. Si ens demanen que mostrem alguna cosa geomètrica, és força probable que agafem un llapis i fem un dibuix 2D amb traços rectes i uns quants angles. Deu ser per això que els escultors són més escassos que els pintors i dibuixants.

Al món i la natura hi ha molt poques rectes. La geometria, aquesta ciència de la mesura del món que hem creat, ha de tenir eines per estudiar i entendre totes les formes corbades que ens envolten. La separació entre corbes i rectes és la que distingeix el món natural de l’artificial, perquè les rectes les vam inventar els humans. Van ser les rectes dels temples inques, egipcis, maies i babilònics, les que van inspirar Euclides quan, en un exercici d’abstracció, les va imaginar com continuació infinita del camí més curt que uneix dos punts donats.

I no es por parlar de geometria, de la geometria de veritat del món natural, sense parlar de Carl Friedrich Gauss. Gauss va ser un geni. Es diu que, als tres anys, va corregir un error en els càlculs financers del seu pare. I als set anys, a l’escola, va descobrir la formula per a calcular la suma d’una progressió aritmètica. De jove, mentre feia de cartògraf, va crear i escriure tota la disciplina que ara es coneix amb el nom de geometria diferencial, junt amb el concepte de curvatura de Gauss que porta el seu nom. El seu descobriment que les característiques de curvatura d’una superfície es poden deduir de manera completa només mesurant angles i distàncies i sense “mirar-la des de fora” és el que ara ens permet validar experimentalment la curvatura de l’espai que va plantejar Einstein a la seva teoria de la relativitat general, i la que ens ajuda a gaudir de tots els matisos corbats quan mirem el meravellós quadre de Hopper.

Tot és geometria. La nostra realitat geomètrica, tan similar a la dels altres animals, ens ajuda a entendre que som natura i que som geometria. Tenim una forma exterior quasi-simètrica, amb un pla de simetria que separa dreta i esquerra que fa que les nostres mans, en lloc de idèntiques, siguin enantiomorfes. La similitud en la disposició dels nucleòtids al llarg de l’hèlix de l’ADN (tot un prodigi geomètric absolutament tridimensional) fa que tots els humans siguem essencialment similars, i ens explica, com molt bé va fer Albert Einstein, que totes les persones que habitem el món som iguals pel que fa als nostres drets. Acabo amb tres frases que se li atribueixen: “Hi ha dues maneres de mirar la vida: creure que els miracles no existeixen o creure que tot és un miracle”, “El meu ideal polític és la democràcia. Que es respecti tothom com a individu i cap persona sigui idolatrada”, i “La paraula progrés no té cap sentit mentre hi hagi nens infeliços”.

Per cert, avui acabo amb una imatge (geomètrica, també), en comptes d’una cita:

Per què la lluna no té sempre la mateixa forma?

dilluns, 2/07/2012

LlunaQuartCreixent2.jpg Sembla una pregunta senzilla: perquè només en veiem la part il·luminada pel sol, i perquè la posició relativa entre el sol i la lluna va canviant al llarg de tot el cicle lunar de 29 dies.

Fa uns 2300 anys, a Alexandria, Aristarc de Samos va pensar el mateix. Però va anar més enllà, i com a bon científic, va veure i va saber interpretar el que tothom tenia davant dels seus ulls però no comprenia. Aristarc es va situar mentalment a la lluna, en el moment del quart creixent. Si des de la terra veiem exactament la meitat de la lluna il·luminada i la meitat no, és que estem mirant “de costat”. És el mateix que quan fem una foto a una persona. Si el sol és baix (per exemple, a punt de pondre’s) i fem la foto amb el sol de costat, a la foto veurem mitja cara rebent la llum del sol i mitja cara a l’ombra. El raonament d’Aristarc va ser impecable. Va començar pensant que a l’espai, la terra, la lluna i el sol formaven un triangle. En el moment del quart creixent, la lluna té el sol de costat. Per tant, el triangle terra-lluna-sol en aquest moment ha de ser rectangle. En altres paraules, l’angle (mesurat des de la lluna i en el moment del quart creixent) entre el sol i la terra, ha de ser de noranta graus. És admirable, no? Simplement mirant la lluna des de la terra, Aristarc va deduir l’angle que hauria vist si hagués anat a la lluna!

Aristarc  va ser probablement el primer en continuar el raonament i deduir que el sol era molt més lluny que la lluna. Ho va fer connectant idees, barrejant la seva abstracció del triangle rectangle lluna-terra-sol amb les eines de càlcul geomètric i trigonomètric que existien llavors. Simplement, i des d’Alexandria, va mesurar l’angle entre la lluna i el sol en el moment del quart creixent i amb això va poder saber el valor dels tres angles del triangle rectangle lluna-terra-sol. Va concloure que el sol era unes 18 vegades més lluny que la lluna.

No sabem si aquesta deducció la va fer Aristarc per primer cop, o si es va inspirar en texts i treballs d’astrònoms anteriors. En sabem molt poc, dels avenços i dels descobriments dels antics. Però el que sí és clar és que fa 2300 anys ja hi havia qui sabia com calcular distàncies relatives entre la terra, la lluna i el sol.

L’únic problema que va tenir Aristarc va ser un problema de mesura. Els seus instruments eren precaris, i es va equivocar quan va mesurar l’angle entre la lluna i el sol. Si intenteu repetir el seu experiment (ho haureu de fer al matí, que és quan, a la fase de quart creixent, podem veure simultàniament la lluna i el sol al cel), comprovareu que l’angle entre la lluna i el sol és quasi de noranta graus. De fet, és de 89 graus i 51 minuts. La seva mesura, en canvi, va ser d’uns 87 graus. El seu raonament va ser totalment correcte, però no va poder mesurar millor l’angle. Ara sabem que un error de quasi tres graus en un triangle rectangle tant allargat produeix errors molt grans en el resultat. De fet, el sol és bastant més lluny: uns 400 cops més lluny que la lluna.

Aristarc de Samos va defensar la teoria heliocèntrica, però no li van fer cas. Les teories geocèntriques, amb la terra al bell mig de l’univers, dominaven en el camp de l’astronomia. Van haver de passar quasi 1800 anys fins que Copèrnic ens va demostrar que no érem al centre de l’univers.

El llibre d’Aristarc, “Sobre els tamanys i les distàncies del sol i de la lluna”, traduit al llatí per Commandino l’any 1572, el teniu també en versió castellana. I aqui tenim una de les pàgines del llibre de Commandino. En notació traduida directament del grec, A representa el sol, B la terra i C la lluna:

DiagramaAristarcSamos.jpg