Entrades amb l'etiqueta ‘entrellaçament’

Els electrons i nosaltres

dissabte, 15/12/2018

Al nostre cos tenim uns 17 grams o més d’electrons (vegeu la nota al final). Si els poguéssim posar tots junts farien un bon grapat de partícules.

Sense electrons no existiríem. Els electrons són darrera de totes les reaccions químiques i bioquímiques que conformen el nostre metabolisme i que ajuden, per exemple, a fabricar proteïnes amb la informació de l’ADN. Són també a la transmissió d’informació entre neurones del nostre cervell i a les fibres nervioses.

No fa massa, a partir dels descobriments d’ara fa dos segles (com el de la relació entre magnetisme i electricitat de Michael Faraday), vam veure que els podíem domesticar i fer que treballessin per a nosaltres. Perquè els electrons són dòcils i previsibles. Es mouen quan hi ha una diferència de potencial o quan es troben en entorns amb camps magnètics variables. Això ens ha permès fabricar motors elèctrics, rentadores, neveres, portes automàtiques, robots, ordinadors, telèfons mòbils i una infinitat d’invents quotidians que ens envolten.

L’any 1905, Einstein va formular l’efecte fotoelèctric i va descobrir la profunda relació que hi havia entre els electrons i els seus cosins, els fotons. Els fotons ens porten energia i informació a distància a la velocitat de la llum, escalfant-nos amb la llum del Sol, fent que els nostres ulls puguin rebre i processar imatges, i fent-nos arribar senyals de ràdio i televisió i fins i tot fotos i vídeos dels nostres amics. Gràcies a l’efecte fotoelèctric, els fotons activen determinats electrons del sensor CCD de la càmera del nostre mòbil i, miraculosament, podem fer fotos. Gràcies als electrons, els fotons que ens envia el Sol poden traslladar i moure grans objectes i actuar sobre la matèria, sent els combustibles, per exemple, dels trens d’alta velocitat: només els cal donar energia als electrons de determinades plaques solars que l’aniran propagant fins les catenàries que alimenten els trens. D’altra banda, els fotons de la wifi ens porten informació que podem llegir, veure, i després guardar en un llapis de memòria. Però, quan ho fem, són els electrons de una infinitat de pous de potencial qui ens guarden aquesta informació. Electrons i fotons, fotons i electrons.

L’experiment d’Albert Abraham Michelson i Edward Williams Morley l’any 1887 va ser el primer que va fer trontollar les nostres ingènues teories, en aquest cas sobre els fotons. L’experiment de de Michelson-Morley va demostrar que els fotons van sempre a la mateixa velocitat, ho miri qui ho miri. És l’experiment que va intrigar Albert Einstein fins que, 18 anys després, va acabar formulant la teoria de la relativitat i dient que si la velocitat de la llum era constant (com s’havia comprovat), tot el demés, inclòs el temps, havia de ser relatiu i no invariant. No hi ha ningú privilegiat, a l’univers. Però els fotons, això sí, sempre transmeten la seva informació i energia a velocitat constant. Una velocitat, la de la llum (c), que no es pot superar i que va resultar ser una constant de l’univers. No és possible enviar informació a una velocitat més gran que c. Per això, mai podrem saber com són ara mateix les galàxies llunyanes que veiem al cel de nit.

I els electrons? El 1913, Niels Bohr va proposar un model atòmic senzill que recorda el model planetari de Copèrnic. En ell, l’àtom és com un petit sistema solar amb el nucli al centre i un núvol d’electrons que hi donen voltes. Els electrons eren com boletes que anaven orbitant el nucli a diferents nivells d’energia. Quan baixaven a òrbites més interiors, emetien energia en forma d’un fotó. Quan captaven un fotó que arribava, agafaven la seva energia i pujaven a una òrbita més externa. Si captaven més fotons i energia, podien fins i tot lliurar-se de l’atracció del nucli i quedar lliures, creant un corrent elèctric quan la matèria era conductora.

Una de les primeres sorpreses que ens donen els electrons, però, és la seva habilitat per a ser màgics. Ara sabem que la teoria de Bohr no és certa, perquè no hi ha òrbites i mai sabem on són, els electrons. Hi són, són la causa de totes les reaccions químiques, tenen massa, però no els podem trobar. Mai podrem agrupar un grapat d’electrons. I Heisenberg ens explica que aquests electrons sembla que no existeixen sempre. Només existeixen quan algú els mira o, més ben dit, quan interaccionen amb una altra cosa. Són màgics. Es materialitzen en un lloc, amb una probabilitat calculable, quan topen contra algun cos. Els salts quàntics d’una òrbita a una altra són la seva manera de ser reals. Un electró és un conjunt de salts d’una interacció a una altra. Però quan ningú no els destorba, els electrons no són a cap lloc concret. No són enlloc. De fet, sembla que fins i tot apareixen i desapareixen a l’espai buit. Perquè l’espai buit és alguna cosa, no és pas el no-res. Ho diu el fet que l’espai sigui tridimensional en lloc de tenir, per exemple, dimensió quatre, perquè el no-res no té dimensions. I el que estem descobrint és que l’espai buit és l’escenari en el que poden créixer la geometria, les matemàtiques, la física… i els electrons, com bé diu en Carlo Rovelli citant Werner Heisenberg.

Però la darrera sorpresa d’aquests electrons que creiem tenir tan ben domesticats ens va arribar fa poc, el 2015, de la mà d’un grup de físics de la universitat de Delft (Ronald Hanson i altres; aquí teniu l’article científic que van publicar a la revista Nature). L’experiment va confirmar la hipòtesi de l’any 1964 de John Bell i ens va demostrar que els electrons i altres partícules elementals experimenten un fenomen que s’anomena “entrellaçament” que fa trontollar tot el que pensem sobre el funcionament de l’univers. Si dos electrons emeten fotons que es troben i queden entrellaçats, això fa que els dos electrons quedin també entrellaçats en el mateix instant, encara que es trobin a milions de quilòmetres de distància l’un de l’altre. I aquí apareix la màgia de l’entrellaçament, que fa que aquestes dues partícules passin a tenir una mena de telepatia subatòmica: si algú mesura una propietat d’un dels electrons (l’anomenat spin, per exemple, que té dos possibles valors) i immediatament algú altre mesura la mateixa propietat a l’altre, el valor que mesurarem al segon electró serà sempre el contrari del valor que han mesurar abans a l’altre. El segon electró, entrellaçat al primer, “sap” instantàniament com s’ha de mostrar quan se’l mesuri. La informació, entre electrons i partícules entrellaçades, es transmet a l’instant, en clara contradicció amb el que sabem que res pot anar més ràpid que la velocitat de la llum (vegeu alguns detalls de l’experiment a la nota al final). Com s’entén, això? Quin és aquest espai-temps que diu a tothom, inclosos als fotons, que no es pot superar la velocitat de la llum, a la vegada que permet que les partícules entrellaçades la superin del tot? Hi ha qui diu que quan els electrons i altres partícules s’entrellacen, es fonen i passen a ser una única partícula que es manifesta a dos llocs a la vegada. Però, com s’explica això de tenir un electró que s’ha desdoblat i materialitzat en dues posicions que poden trobar-se a anys llum de distància una de l’altre? Què és l’espai i què és el temps?

L’entrellaçament ens fa veure que certes propietats dels electrons i altres partícules no poden existir abans que les  mesurem. Diuen que l’acte de mesurar és el que realment crea aquestes propietats. I veiem que hi ha propietats que es creen a distància, instantàniament, saltant-se els principis que fins ara teníem: que res es pot transmetre a velocitat més gran que la de la llum. Els electrons entrellaçats representen el gran misteri de les parelles telepàtiques. A diferència dels seus cosins fotons, ràpids però previsibles.

La imatge de dalt l’he obtingut a partir de les d’aquesta pàgina web de Ryan Whitwam, que mostra els electrons que enllacen àtoms d’hidrogen. La imatge va ser obtinguda el 2013 amb un microscopi de força atòmica.

Les coses, i sobretot els electrons, no són tan deterministes com voldríem. Richard Feynman, a les seves lliçons de física, deia que amb els electrons i altres partícules no podem fer altra cosa que calcular probabilitats, i que hem de sospitar amb molt fonament que aquesta limitació ens acompanyarà sempre perquè és un fet essencial del món subatòmic. I Ronald Hanson reconeix que tot això de l’entrellaçament supera la nostra capacitat actual de comprensió: l’univers és definitivament estrany. I és que la natura és així, encara que no ens agradi.

——

Per cert, parlant de coses que sabem fer amb els electrons i l’electricitat, la Rosa Montero diu que el 70% de la inversió en infraestructures ferroviàries es dedica a l’alta velocitat, que només és utilitzada per un 4% de viatgers. En canvi, els trens de rodalies, regionals i de mitja distància, que transporten al 96% dels usuaris, reben menys d’un terç del pressupost. A més, la modernització d’un quilòmetre de via convencional (fins arribar a velocitats mitjanes de 165 Km/h) és 10 vegades més barata que la construcció d’un quilòmetre d’AVE.

——

NOTA: La massa en repòs d’un electró és aproximadament 9,109 * 10^(-31) Kg., que correspon a 1/1836 de la massa del protó. La massa del neutró és molt similar a la del protó, s’altra banda. Tenint en compte que el nostre cos té entre un 60 i un 65% d’aigua, i que bàsicament som hidrogen, oxigen i carboni en proporcions del 10%, 65% i 19,37% respectivament (la suma d’aquests tres elements és el 94,37% del nostre pes), és fàcil fer un càlcul aproximat del pes total dels electrons que ens conformen. Com que el pes atòmic de l’hidrogen és 1, la proporció d’electrons deguda als àtoms d’hidrogen és de 0.1 / 1836, o sigui, 5.45 * 10^(-5). El mateix càlcul amb l’oxigen dona dona una proporció en pes d’electrons de (0.65 * 8/15.999) / 1836 = 1.77 * 10^(-4), atès que el seu pes atòmic és de 15,999. I si ho fem amb el carboni, el resultat és (0.1937 * 6/12) / 1836 = 0.53 * 10^(-4). Sumant les tres proporcions, veiem que per cada 10 quilos del nostre pes, tenim 2,845 grams d’electrons que provenen d’àtoms d’hidrogen, oxigen i carboni. Val a dir que el total és una mica més gran, perquè caldria sumar-hi els electrons dels elements més complexes que també configuren les molècules de la resta del nostres cos (molècules que en total suposen 563 grams per cada 10 Kg. de pes).

L’experiment de Ronald Hanson i els del seu grup va demostrar que, en l’entrellaçament, no hi ha variables ocultes (no hi ha fenòmens que ara no puguem detectar però que tal vegada en el futur podríem arribar a mesurar), i que, per tant, l’entrellaçament és una propietat real que tenen els electrons, els fotons, i altres partícules. L’experiment, màgic i sorprenent, va ser aquest: a dos laboratoris A i B separats 1280 metres a Delft, els científics van experimentar amb electrons que havien quedat atrapats prop d’alguns àtoms de nitrogen que hi havia, a tall d’impuresa, en dos diamants (un a A i l’altre a B). Amb impulsos de làser, anaven activant reiteradament els electrons de manera que, tant l’electró del diamant de A com el del diamant de B emetien un fotó cada un d’ells a cada impuls làser. Els fotons es dirigien a un tercer laboratori C entre A i B, on algunes vegades es trobaven en un mirall semitransparent i quedaven entrellaçats. Llavors es produïa un fenomen sorprenent, que és l’anomenat “intercanvi d’entrellaçament”: de manera immediata, quan els dos fotons s’entrellaçaven a C, els seus dos emissors, els electrons als diamants de A i B, quedaven també entrellaçats. És com si, quan uns joves formen parella, els seus pares quedessin automàticament aparellats entre sogres. Tot seguit, es mesurava l’spin de l’electró de A i també es mesurava l’spin corresponent de l’electró de B. Com que no hi havia cap possibilitat de transmetre informació entre A, B i C (es tractava de demostrar que l’entrellaçament es transmet de manera instantània), el que es va fer és usar tres rellotges atòmics d’alta precisió, un a cada lloc, i guardar localment a tres ordinadors a A, B i C, el temps i el resultat de cada experiment. Si a A i B es guarda el moment de l’emissió de cada fotó, els instants de temps en que es fan les mesures i els valors dels spin que s’han mesurat, i a C es guarda els instants de temps en els que s’ha pogut aconseguir un entrellaçament exitós de fotons, es pot fer una anàlisi a posteriori i només considerar vàlids els cassos en que hi ha hagut entrellaçament de fotons a C i en els que les mesures d’spin als corresponents electrons a A i B s’han fet amb una diferència de temps de menys de 4,27 microsegons (el temps que la llum tarda en recórrer els 1280 metres). D’aquesta manera ens assegurem que la mesura feta a A no ha pogut arribar a B i que la mesura que hem fet a B no s’ha pogut transmetre a A. En tot cas, cal dir que l’experiment és una mica més complicat perquè els spins dels electrons es poden mesurar en diferents eixos i perquè cal garantir la màxima neutralitat durant el càlcul de les correlacions (veure l’article).

La matèria telepàtica

dijous, 21/01/2016

Els experiments científics dels darrers mesos, que demostren el fenomen de l’entrellaçament i es van endinsant en les seves particularitats, són directament al·lucinants, permeteu-me l’expressió. I ho són per tres raons, com a mínim. Perquè són experiments que ratifiquen sofisticades abstraccions de la ment humana, que fins ara ens podien semblar recargolades i absurdes. Perquè constaten que no sabem res i ens fan trontollar conceptes tan estesos com són els d’espai i causalitat. I finalment, perquè trenquen un cop més aquesta falsa idea de què la ciència és l’espai de les certeses, i en canvi apropen la física i la filosofia. En poques paraules, els experiments sobre l’entrellaçament ens expliquen que l’univers no és local, i que podem controlar fenòmens que seran simultanis a milions d’anys llum de distància. És com si la matèria tingués propietats telepàtiques instantànies i com si el que és infinitament lluny es trobés de fet infinitament a prop. Els experiments enterren l’anomenat principi de localitat, un dels principis bàsics de la ciència clàssica, segons el qual un objecte només està sotmès a la influència del seu entorn immediat.

Les partícules elementals (fotons, electrons i altres) fan coses rares que sembla que transgredeixin les normes del món que veiem. Per exemple, poden ser a dos llocs al mateix temps. És difícil d’entendre (i per això se’n parla poc) perquè aquest món nanoscòpic, que segueix les regles de la física quàntica, és un sac ple de misteris i sorpreses. Tan és així, que ni els mateixos pares d’aquestes teories quàntiques, Max Planck i Albert Einstein, ho entenien. A contracor, Planck es va haver de rendir a l’evidència dels experiments, que mostrava que les característiques de la radiació calòrica que surt dels forns només es podia explicar si acceptàvem que l’energia irradiada era una munió de petits “granets” o “quants” d’energia, mentre que Einstein es va adonar que aquests “quants” eren el que ara anomenem fotons.

La física quàntica va néixer per explicar aquests estranys resultats dels experiments amb forns, que al segle XIX ningú entenia. Mira per on, un objecte tan quotidià com un forn va acabar capgirant la física. Però tot continuava essent misteriós, quan Max Planck ens va fer entrar en aquesta altra dimensió, com Alícia en el país de les meravelles. Tan estrany era el que deien els resultats dels experiments com el que després van acabar preveient les teories quàntiques: el principi d’incertesa de Heisenberg, les lleis probabilístiques d’Schroedinger… i el teorema de Bell. L’any 1964, John Bell va demostrar que el principi de localitat, amb la hipòtesi quàntica, és forçosament fals, perquè cap llei de la natura que segueixi aquest principi de localitat serà capaç d’explicar les prediccions de la física quàntica. En d’altres paraules, Bell ens va dir que el nostre univers és “no local”, que el concepte de “lluny” és una fal·làcia, i que existeixen variables desconegudes que són “no locals”. Quasi res. I justament ara, els experiments li estan donant la raó: l’univers no és local.

En poques paraules, els experiments sobre l’entrellaçament, com el publicat fa pocs mesos a la revista Nature per científics de la Universitat Tecnològica de Delft i de l’Institut de Ciències Fotòniques (ICFO) de la UPC, demostren que els comportaments de partícules situades a gran distància es poden afectar mútuament de manera instantània. El procés és el que mostra la imatge de dalt. A l’esquerra veiem la gènesi d’una parella de fotons entrellaçats (la imatge és d’aquesta web). Els fotons neixen a la vegada, com una molècula fotònica de bessons univitel·lins, i per això queden entrellaçats per sempre més, durant tota la seva existència. El catalitzador de tot plegat és, en aquest cas, un nano-cristall semiconductor de 20 nanòmetres. La part inferior esquerra de la imatge mostra el patró de radiació d’una d’aquestes parelles entrellaçades durant els seus primers instants d’existència i mentre es van separant. Suposem ara que enviem els dos fotons a l’espai. Mentre ningú els analitzi, no sabem les seves propietats i, per exemple, com mostra l’esquema de la part dreta de la imatge (que és d’aquesta web), tots dos podrien tenir una polarització horitzontal o vertical (simplificant, podríem entendre que la polarització és un sinònim d'”orientació” o inclinació). Imaginem que al cap d’un temps, un dels fotons, que viatja per fibra òptica, arriba a casa de la noia de la dreta, que l’observa i veu que té polarització vertical. Doncs bé, el fenomen de l’entrellaçament fa que en aquest mateix instant, l’altre fotó bessó (que es pot trobar molt i molt lluny en una altra fibra òptica) se’n entera “telepàticament” i quan algú, més tard, l’observi, veurà amb tota seguretat que la seva polarització és horitzontal. És com si, entre els dos, volguessin completar tots els possibles estats. Si un ens ha dit que és vertical, l’altre ens dirà que és horitzontal, i a l’inrevés. Encara que siguin a milions d’anys llum, es complementen i “saben” l’un de l’altre com si fossin a tocar, fent-nos veure que no entenem res ni de l’espai ni de la matèria que ens conforma. No sabem on som ni de què som fets.

El divertit de tot plegat és que, en el món de les partícules subatòmiques, no hi ha divorci. Quan dues o més partícules han quedat entrellaçades, no hi ha pas enrere. Qualsevol d’elles sap instantàniament el que li ha passat a l’altra. En paraules més precises, la mesura de l’estat quàntic d’una propietat d’una de les partícules fa que aquesta partícula quedi congelada en un estat determinat, amb la qual cosa podem saber immediatament l’estat de l’altra partícula entrellaçada, per molt allunyada que aquesta estigui de la primera. És la telepatia de les partícules entrellaçades. Es tracta del mateix principi que hi ha darrere la teletransportació quàntica, quan les propietats d’una partícula es “teletransporten” de manera instantània a l’altra. A la teletransportació quàntica la informació no es transmet materialment, no hi ha un senyal que viatgi, sinó que una partícula rep la informació de l’estat de l’altra gràcies a l’entrellaçament. Ho sabem perquè ho hem experimentat, però no ho entenem perquè la realitat de les partícules ens supera. En el món que coneixem, tot és local: si vull fer un petó a algú, ens hem de trobar al mateix lloc i en el mateix moment. En canvi, les partícules i els fotons entrellaçats saben comunicar-se encara que es trobin a diferents galàxies, i no ho fan a la velocitat de la llum sinó de manera instantània. Com si el que és molt i molt lluny, en el món nanoscòpic fos a tocar. De fet, hi ha qui diu que aquesta telepatía de les partícules entrellaçades és deguda a que de fet són una única partícula que veiem simultàniament a dos llocs diferents…

Els humans, en tot cas, som ben sorprenents. Fem un experiment, ens adonem que els seus resultats trenquen i enfonsen totes les nostres teories filosòfiques i físiques sobre l’espai, però a la vegada aprenem una nova llei de l’Univers. Immediatament veiem com li podem treure profit, i ho aconseguim. I això és cert en aquest cas perquè de fet acabem de descobrir el que segurament permetrà en el futur la transmissió absolutament segura d’informació xifrada amb les tècniques de criptografia quàntica: generarem parelles de partícules entrellaçades, i de cada parella ens en quedarem una i enviarem l’altra a la persona que volem que rebi el nostre missatge. En el moment que nosaltres mesurem una determinada propietat d’una de les partícules (fotons) que ens hem quedat, sabem amb absoluta seguretat el que llegirà, de la partícula entrellaçada, el receptor del missatge, i així podrem generar claus de xifrat que ningú podrà conèixer llevat de nosaltres dos. Pel camí, i com diu Antonio Acín, si un espia intenta mesurar aquests fotons, segons el principi d’incertesa vàlid al món quàntic, en modificarà l’estat i, per tant, l’emissor i el receptor s’adonaran que algú està intentant interceptar la informació i immediatament podran aturar l’enviament.

Però tot és encara més sorprenent. Un equip internacional de científics (alguns d’ells de la UAB) han generat una parella de fotons entrellaçats que poden estar en més de cent estats diferents cada un d’ells (concretament 103), o en qualsevol superposició d’aquests estats. Això és molt més fàcil de dur a terme que entrellaçar un grup de partícules. Per dir-ho en paraules senzilles, han aconseguit dos fotons que podrien compartir telepàticament una paraula de 12 lletres (calculant en base d’una codificació ASCII de 8 bits per caràcter surten quasi 13 lletres). A aquest pas, aviat sabrem com fer que dos fotons o dos electrons puguin compartir tota una carta o un article d’opinió.

I, de fet, l’entrellaçament natural el tenim cada dia davant els nostres ulls. Ara sabem que les capes d’electrons dels àtoms sempre contenen electrons entrellaçats, i s’ha demostrat mitjançant espectroscòpia de transició de femtosegons, que la conversió eficient d’energia dels fotons en energia química durant la fotosíntesi de les plantes es fa amb fotons entrellaçats.

Quan els experiments de la ciència ens mostren que el poc que pensàvem que sabíem és fals, m’agrada pensar en el que diu l’Adela Cortina. L’Adela diu que la filosofia és un saber que s’ha ocupat secularment de qüestions radicals quan les respostes es troben situades més enllà de l’àmbit de l’experimentació científica. Del sentit de la vida i de la mort, de l’estructura de la realitat,  de per què parlem d’igualtat entre els éssers humans quan biològicament som diferents, de quines raons hi ha per defensar drets humans … Diu que a les seves èpoques de major esplendor, la filosofia ha treballat colze a colze amb les ciències més rellevants, i ha estat la fecundació mútua de filosofia i ciències la qual ha aconseguit un millor saber, perquè la filosofia que ignora els avenços científics es perd en especulacions buides, mentre que les ciències que ignoren el marc filosòfic perden sentit i fonament.

Per cert, Harold Kroto, premi Nobel de Química, diu que la ciència és una manera de pensar, que es basa en provar si les coses funcionen. Quan ho fem, diu, es pot fer tecnologia, i el nostre mòbil funciona. Explica que les equacions de Maxwell estan provades i funcionen cada cop que connectem el mòbil. Diu però que si el teu mòbil fos tan efectiu com el resar, no el compraries.