Entrades amb l'etiqueta ‘EROI’

Energia, benestar i la calor del fred

divendres, 10/03/2017

Què és el millor que podem fer per no passar fred a casa a l’hivern?. Bé, de fet és una pregunta sense resposta clara, perquè el concepte de “millor” és evidentment ambigu. Què és el que realment volem? Podem pensar en termes de pagar poc, de gastar poca energia, de baixa contaminació, de sostenibilitat energètica…, i podem pensar en base a molts altres factors.

Però sí que podem fer unes quantes consideracions, basades en principis ben senzills de la física i la termodinàmica. És clar que tota la calor de la calefacció, estufa o llar de foc acaba marxant a l’exterior. Per tant, la temperatura de dins a casa a l’hivern depèn del que hi posem (energia que destinem a la calefacció) i de la facilitat que tingui en sortir de casa (aïllament). A més energia, més temperatura; a més aïllament, també. I, com que no només volem arribar a una determinada temperatura sinó que la volem mantenir tot el dia, el que ens cal és destinar-hi potència energètica mantinguda. Hem de gastar quilowatts, i els hem de gastar durant hores. Per això ens facturen els quilowatts hora.

Primera consideració: si volem poca despesa energètica, el que ens cal és un bon aïllament. Una casa molt ben aïllada, si no hi viu ningú, manté una temperatura gairebé constant i força agradable, estiu i hivern. És el que passa sota terra. Si l’aïllament de casa fos molt i molt bo i l’escalféssim a 20 graus abans d’anar-hi, quan entréssim a casa podríem apagar la calefacció i les estances no es refredarien: n’hi hauria prou amb la calor metabòlica del nostre cos, perquè seria una calor que la casa mantindria sense pèrdues. Fins i tot podria ser que acabéssim tenint massa calor i havent d’obrir alguna finestra.

Segona consideració: les bombes de calor són més eficients que les estufes. És poc intuïtiu, perquè estem acostumats a dir que a deu sota zero fa fred i que a 35 graus fa calor; però la física ens explica que deu sota zero són 263 graus Kelvin, i això, traduït, vol dir que l’aire de l’hivern, fins i tot quan és gèlid, conté bastanta calor. Les bombes de calor només són ascensors d’energia calòrica que pugen la temperatura del seu fluid refrigerant des dels 263 graus Kelvin a uns 303 o 310 graus Kelvin i aprofiten part de l’energia que ens aporta l’aire fred del carrer (vegeu la nota al final).

Tercera consideració: les bombes de calor són més eficients, però no sempre són els sistemes de menor cost. És el que dèiem, cal saber què volem dir quan parlem de “millor”. Per aportar una unitat d’energia de calefacció a casa, una bomba de calor pot acabar gastant aproximadament 0,3 unitats energètiques d’electricitat (vegeu un cop més la nota al final), que a la seva vegada consumeixen 0,9 unitats energètiques de petroli o carbó a les centrals elèctriques. Per tenir la mateixa unitat d’energia de calefacció, els sistemes de calefacció a gas acaben consumint de l’ordre de 1,4 unitats energètiques de combustible (en aquest cas, gas). El cost d’una i altra opció dependrà del país on visquem, dels sistemes de producció elèctrica, dels sistemes tarifaris i de la facilitat d’accés a un o altre combustible. Fins i tot, a la muntanya, el menys car serà sempre la llar de foc (o estufa) amb llenya, que a certs indrets és ben barata i que permet l’autoconsum. Hem de reconèixer que el cost energètic no té massa relació amb el cost econòmic que finalment hem de pagar cada hivern.

Quarta i darrera consideració: les bombes de calor poden ser sostenibles i poc contaminats. Perquè, quan al cost econòmic afegim els costos de producció i manteniment i els costos ambientals, les coses tornen a canviar. Si tenim en compte l’índex EROI, que mesura el quocient entre l’energia obtinguda i l’energia necessària per a construir les centrals (o sistemes eòlics o solars) i per al seu manteniment, veiem que el gas natural als Estats Units té un EROI de 67 (dades de 2005) mentre que al Canadà és de 20. Les energies solar i eòlica tenen valors d’EROI entre 14 i 18, comparables als del gas al Canadà però no pas als del gas d’Estats Units. Per tant, i en base a l’EROI, la decisió d’una persona als Estats Units sembla evident que hauria de prioritzar el gas natural. Ara bé, l’índex EROI és incomplet, ja que no inclou la contribució a la contaminació ni a l’escalfament global i a més és complex d’avaluar i no genera consens. El tema és polèmic i amb forts interessos econòmics que dificulten una anàlisi rigorosa i imparcial. Però hi ha gent tan poc sospitosa com en Jeremy Rifkin, que proposen solucions radicals i trencadores. Es tracta de pagar per la infraestructura però no per l’energia. Si necessitem energia, ens comprem un sistema solar o eòlic i després ja la tindrem a cost zero perquè ens vindrà del vent i del Sol (amortització a banda). És la ben coneguda auto-generació. És el que fem ara amb internet: ens comprem un mòbil i després cerquem informació a cost zero i compartim continguts sense pagar quasi res. Rifkin diu que la Xina ja aposta per aquesta solució i que està invertint molts diners en la digitalització de la producció elèctrica per a que milions de ciutadans xinesos puguin produir la seva pròpia energia solar i fins i tot puguin tornar els excedents a la xarxa elèctrica pública. No se’n parla, però està passant.

En resum: les solucions de benestar energètic amb perspectives de ser econòmiques, sostenibles i poc contaminants és probable que es basin en bombes de calor mogudes amb energia elèctrica auto-generada amb fonts renovables. No crec que triguem molts anys a veure-ho.

———

Per cert, en Bru Rovira explica que Juan Luis Cebrián va fer negocis a Sudan del Sud amb l’empresari espanyol d’origen iranià Massoud Zandi, que va aconseguir una llicència per explotar-hi petroli. Felipe González els va ajudar per a que poguessin aprofitar-se del cru, en una zona devastada per la guerra i l’espoli.

———

NOTA: L’eficiència de les bombes de calor es basa en aprofitar la calor que conté l’aire fred de fora de casa, a l’hivern. He explica molt bé la imatge que veieu a baix (que és d’aquesta web), i també aquest vídeo. Amb les dades del diagrama de baix, podem veure que una calefacció de gas, per donar-nos una unitat d’energia, consumeix 1,4 unitats d’energia del combustible. Una calefacció elèctrica de baixa temperatura (i baixa radiació) hauria de consumir una unitat d’energia elèctrica. Val a dir que el consum de gas és més elevat perquè, com mostra el diagrama, una part de l’energia de combustió (en aquest cas, 0,4), se’n va per la xemeneia. En canvi, una solució basada en el bombeig de calor ens acaba aportant la mateixa unitat d’energia amb un consum d’energia elèctrica de 0,3. Les 0,7 unitats restants, les agafa de l’aire fred del carrer.

L’interessant de tot plegat és el mecanisme que fa que que aquestes bombes de calor funcionin com veritables ascensors de calor. Suposem que la temperatura exterior és de 5 sota zero, i que dins de casa volem mantenir una temperatura de 20 graus. Com que no podem fugir del segon principi de la termodinàmica que diu que la calor sempre va del més calent al més fred, les bombes de calor necessiten dos salts tèrmics, que podem suposar (cosa força raonable) que són de l’ordre d’entre 5 i 10 graus. Una solució, per exemple, és dissenyar la bomba de calor de manera que mantingui una temperatura de 10 sota zero (-5-5) a l’exterior, mentre genera escalfor d’uns 30 graus dins de casa. El salt tèrmic de l’exterior fa que l’aire, que és a 5 sota zero, es refredi una mica més mentre escalfa el refrigerant (que com hem dit és a 10 sota zero i encara és més fred). I el salt tèrmic de dins a casa fa que aquest mateix liquid refrigerant, que la bomba ha escalfat fins els 30 graus, vagi passant calor amb un ventilador a l’aire de casa que es manté als voltants dels 20 graus. El sistema funciona perquè en tots dos cassos, la calor va del més calent al més fred i les molècules del que té una temperatura més elevada (aire a l’exterior, refrigerant escalfat dins de casa), que es mouen més de pressa, poden passar part de les seva energia calòrica a les del fluid més fred (refrigerant a l’exterior, aire ambient a l’interior). A escala molecular tot és senzill, perquè (a diferència del que passa a les nostres societats) sempre hi ha transferència de qui més té a qui més necessitat és d’energia. L’únic que cal és aconseguir que el refrigerant (en barreja de líquid més vapor) s’escalfi 40 graus per passar dels 10 sota zero fins els 30 graus que té a la sortida del compressor dins de casa, cosa que és més o menys fàcil en funció del tipus de refrigerant.

I, com és que aquestes bombes de calor tenen un bon rendiment? Com és que podem agafar tanta calor d’un aire del carrer que és a 5 sota zero? Doncs perquè la calor que conserva qualsevol fluid (aire o refrigerant) és proporcional a la temperatura, mesurada en graus Kelvin. És ben sabut que l’origen de l’escala de temperatures absolutes o Kelvin és als 273 graus sota zero. Si traduïm tot el que hem dit a aquesta nova escala, veurem que estem parlant de l’aire del carrer que és a 268 graus Kelvin, que passa energia calòrica a un refrigerant que es troba a 263 graus Kelvin. La bomba de calor escalfa aquest refrigerant fins una temperatura de 303 graus Kelvin, i finalment els ventiladors de l’habitació li treuen calor per mantenir la temperatura de benestar de 293 graus Kelvin. En aquesta nova escala, tot canvia: veiem que l’aire del carrer (que ens sembla fred) és en realitat força energètic. Les bombes de calor tenen un bon rendiment perquè només han de passar un fluid que ja es troba “a nivell” 263, fins “al nivell” 303. Si la temperatura fos una muntanya, podríem dir que les bombes de calor, per pujar fins al cim d’alçada 303, no es cansen gaire perquè comencen a una alçada de 263.

Com podeu veure en aquesta pàgina web (a l’apartat de “Heat pumps and refrigerators“), el cicle liquid-vapor de les bombes de calor és un cicle derivat del de Rankine, que es recorre en sentit invers al típic cicle de Carnot de les màquines tèrmiques perquè aquí el que cal bombejar calor. El cicle es mou quasi tota la estona amb el refrigerant en un estat de barreja entre líquid i vapor. La calor es capta de l’aire fred de fora a les fases d’evaporació i expansió, després el fluid es comprimeix mentre s’escalfa en forma de vapor, i finalment deixa anar la calor mentre es condensa.

Tres observacions finals en relació al diagrama de baix. En primer lloc, podem veure que l’eficiència de la bomba de calor compensa el comportament poc eficient de les centrals elèctriques tèrmiques, que implica que per obtenir 0,3 unitats d’energia elèctrica cal cremar al voltant de 0,9 unitats energètiques de combustible (en aquest cas, carbó). En segon lloc, el diagrama no inclou les pèrdues de la bomba de calor que fan que el seu rendiment sigui sempre inferior a l’esperat (si bombegem 0,7 unitats d’energia tèrmica de l’aire fred amb 0,3 unitats d’energia elèctrica, sempre obtindrem, dins de casa, menys de una unitat d’energia tèrmica). Finalment, val a dir que en qualsevol dels casos esmentats, podem disminuir els costos finals si usem sistemes d’emmagatzematge d’energia que permetin acumular-la durant les franges horàries en les que l’energia és menys cara o en les que podem disposar d’energia solar/eòlica distribuïda.

Energia, costos i sostenibilitat

dimecres, 25/09/2013

Els_Tres1.jpg Hi ha qui defensa que l’Estat no ha de subvencionar les energies renovables, perquè considera que el mercat és el que finalment ha d’acabar definint el que és rentable i el que no ho és. És una opinió vàlida però no és pas la única. El contrapunt em va venir d’un amic, expert en temes d’energia, que em va exposar un enfoc força diferent. Els Estats ja estan subvencionant molt fortament les energies convencionals fòssils i un bon nombre d’indústries relacionades, i ho estan fent en una mesura molt més gran que l’import dels ajuts que fins ara anaven a les renovables i que ara volen suprimir. Les subvencions dels Estats a les energies convencionals, són subvencions per omissió. No es persegueix prou les industries contaminants, i els gravàmens a les emissions són clarament insuficients. No ho diu només el meu amic. Una persona tan poc sospitosa com en Mark Lewis, cap del departament de recerca en emissions de carboni del Deutsche Bank, explica que les industries que emeten diòxid de carboni sense pagar per aquest cost ambiental i sense repercutir-lo en el preu dels seus productes, de fet estan rebent un subsidi. Diu també que pensar en nous impostos ambientals no és afegir-ne de nous, sinó eliminar aquest subsidi que ara reben les industries contaminants.

Justament aquests dies, a Estocolm, s’està reunint un dels grups de treball del Panell Internacional pel Canvi Climàtic de les Nacions Unides, l’IPCC. A finals d’any sabrem les seves conclusions sobre l’estat del nostre planeta, i l’any vinent coneixerem el seu cinquè informe, l’anomenat AR5.

L’actualitat, a més de la reunió a Estocolm, ens ve de la mà de la ciència i de la revista “Nature“. Aquesta prestigiosa revista dedica el seu darrer número justament al IPCC. En el seu editorial de fa pocs dies, Nature comenta el difícil que és fer prediccions científicament contrastades en un sistema tan complex com és el de la Terra. De fet, i segons dirà el proper informe de l’IPCC, l’únic que s’ha pogut concloure és que si incrementéssim la concentració de diòxid de carboni a l’atmosfera fins el doble de l’actual, acabaríem causant un escalfament global d’entre 1,5 i 4,5 graus de temperatura. És un interval gran, que ens dóna una idea del grau d’incertesa de les actuals estimacions, si volem que siguin científicament correctes. Però l’editorial també diu que els governants, que reben els informes del IPCC, han fet molt poc en el sentit de reduir les emissions; i que no sembla que tinguin massa pressa en fer-ho. Continua dient que és ben conegut que les emissions d’efecte hivernacle estan canviant el clima, que ja estem veient els efectes, i que en veurem més. Afirma que és un problema social molt rellevant, que requereix immediata atenció. D’altra banda, el darrer informe de WWF parla també de la reunió del IPCC i va en el mateix sentit. WWF recorda que el sector energètic és en part responsable del canvi climàtic, i espera que aquest nou informe del IPCC analitzi les conseqüències que es deriven de l’ús dels combustibles fòssils. Per cert, cada cop hi ha més empresaris com en Jeremy Leggett que diuen que parlar de l’abundància de combustibles fòssils és un mite i que continuar utilitzant-los és un risc, com explica en el seu blog a “The Guardian.

La conclusió dels científics i experts és que el cost actual de l’energia no és ni real ni correcte. Caldria tenir en compte l’EROI, i a més caldria tenir en compte els costos ambientals. Estem èticament obligats a utilitzar models sostenibles per als càlculs dels costos. El concepte és clar, i quan l’apliquem, veiem que les energies renovables acaben essent més barates que les fòssils. Un cost energètic sostenible és un cost que inclou tot el que cal per tal d’assegurar que quan morim, no deixarem la Terra en un estat pitjor del que ens va ser donat. El nostre deure és garantir que els nostres néts no viuran pitjor que nosaltres. Aquest és el significat profund de la paraula sostenibilitat. Així com, quan deixem un espai public, se’ns demana que el deixem tal com l’hem trobat, deixar el nostre planeta en pitjors condicions és immoral. Deixar-lo bé i endreçat té un cost, però l’hem de pagar. De veritat volem mantenir un fals progrés que acabarà passant els problemes als nostres néts i besnéts?

Hi ha països que es mouen més que d’altres. Els alemanys volen ser líders en renovables i actuen en conseqüència. Consideren que per a que el sistema sigui sostenible és necessari que el conjunt d’energies alternatives com la solar, l’eòlica, la biomassa i la hidràulica l’any 2022 sigui d’un 35% del total consumit. A més, per exemple, Alemanya lidera una associació de deu països amb l’objectiu de potenciar les energies renovables (en el grup hi ha França, el Regne Unit o el Marroc, però podeu veure que no tothom hi és). França vol ingressar 6.500 milions d’euros entre el 2015 i el 2016, gràcies a un impost especial sobre energies contaminants. L’any 2016, l’impost gravarà amb 22 euros la tona d’emissió de diòxid de carboni. Mentre tant, les estadístiques d’Idescat són esgarrifoses: el nostre consum d’energies renovables és de l’ordre de la meitat de la mitjana europea. Hi ha qui s’ha posat les piles i hi ha qui prefereix tancar els ulls i anar seguint tot fent-la grossa.

Com diu en Gustavo Duch, en realitat el que tenim és un model econòmic que insta a guanyar diners per sobre de les capacitats del planeta. Estem gastant i malversant diners que no són nostres, perquè anem creant problemes que hauran de pagar els nostres néts.

Què volem fer? Ens apuntem a la política de fer la bola més grossa i passar-la als nostres descendents, tot oblidant que el cost de l’energia ha de ser sostenible? O bé ens decidim d’una vegada a invertir en recerca i renovables i a fer una política activa d’estalvi, reconversió energètica i reducció d’emissions contaminants? Continuem inflant la bombolla ambiental, anem a remolc de les grans empreses i acceptem que penalitzin amb un impost la generació energètica per a consum privat, o ens apuntem a iniciatives innovadores com la de l’energia distribuïda que ens proposa l’Antoni Vives? Pensem només en nosaltres, o pensem què és el que volem deixar en herència als nostres besnéts?

Per cert, Josep Carreras diu que, després de la seva curació, va decidir que havia de retornar a la vida i a la ciència allò que li havia donat quan més ho necessitava. Però els nostres polítics ni prioritzen la ciència ni inverteixen en recerca. Aixi anem.

L’energia com a eina per a calcular costos

dimecres, 3/04/2013

Eolica2.jpg Sabeu què és l’EROI? EROI, en anglès, vol dir “Energy Return On Investment“. És el retorn energètic en base al que ens hi hem gastat. És una manera interessant de calcular el cost i el valor de l’energia. L’EROI es basa en l’economia de l’energia i no pas en la dels diners. Veiem-ho amb un exemple: l’EROI de l’energia eòlica té actualment un valor de 20 (vegeu nota al final). En d’altres paraules, aquest valor ens diu que l’energia que obtenim amb els actuals generadors eòlics és 20 vegades l’energia que hem necessitat per poder arribar-la a obtenir (construcció dels molins de vent, transport, muntatge, manteniment, etc.). En el cas de la gasolina i el gasoil, l’EROI ha anat baixant al llarg dels anys. Fa dècades era de 100, mentre que ara és de 16 perquè cada cop hem de gastar més i més energia per tal d’obtenir un litre de gasolina. Es diu que les fonts d’energia deixen de tenir sentit quan l’EROI arriba a valors propers a 5 o passa a ser més baix que 5. Per això, ben aviat l’extracció de petroli deixarà de ser rentable. L’EROI del petroli i dels seus derivats baixa constantment, mentre que el de les energies alternatives va pujant com a resultat dels resultats de les investigacions en aquest camp i dels nous processos productius. D’altra banda, és interessant veure que l’EROI del biodièsel de la soja, de l’energia nuclear i del petroli obtingut a partir de sorres bituminoses, a més d’altres (vegeu nota al final) és molt baix. Són energies poc rentables, tot parlant en termes energètics. En el cas de l’energia nuclear això és degut sobretot als costos d’enriquiment de l’urani i als de la gestió dels residus.

Una observació addicional: l’EROI no inclou els costos ambientals. En el cas de l’energia nuclear es té en compte el cost del tractament dels residus, però en els cas dels combustibles fòssils no es té en compte el cost associat a les emissions d’efecte hivernacle. Si es tingués en compte, és ben segur que l’EROI del petroli, gasolina, gasoil i carbó baixaria i que quedarien més mal situats.

El mateix article de la revista Scientific American explica de manera molt clara el rendiment que donen les diverses fonts d’energia. Imaginem que disposem d’un Gigajoule d’energia (un Gigajoule són mil milions de joules, o bé, en d’altres paraules, 277 kilowatts hora. És l’energia elèctrica que gastem a casa en uns quants mesos). Si aquest Gigajoule l’emprem en obtenir petroli, refinar-lo i convertir-lo en gasolina per usar-lo en el nostre cotxe, podrem recórrer 5792 quilòmetres i arribar fins Sibèria. Però si l’emprem en generar electricitat i utilitzem un cotxe elèctric, podrem recórrer quasi el doble: 10458 quilòmetres (són dades dels EUA; aquí, la comparació seria encara més favorable als cotxes elèctrics).

L’anàlisi és clarificador, oi? L’anàlisi de rendiment ens diu que val la pena anar cap als cotxes elèctrics i els híbrids endollables. L’energia elèctrica dóna un millor rendiment, a més de ser més neta i a més d’altres consideracions ambientals que també van al seu favor. I actualment, la millor energia elèctrica pel que fa a l’EROI és la que generem amb energies renovables: eòlica i hidroelèctrica. El rendiment de les nuclears i dels combustibles obtinguts per fracking és massa baix. D’altra banda, el futur del fracking i de les sorres bituminoses és dubtós. No és clar que siguin rendibles, i comporten importants perills mediambientals. La fotovoltaica té un EROI baix, però en un proper futur ben segur que quedarà més ben posicionada. Per què costa tant moure’ns cap a les renovables i cap als vehicles elèctrics i hibrids endollables?  Quins interessos hi ha darrera d’aquesta actual lentitud?

Malauradament, la política energètica Europea és molt deficient. De fet, la paraula “energia” ni tan sols apareix en els tractats de Roma. Alguns experts diuen que el sistema energètic Europeu és incoherent mentre que d’altres ja diuen directament que és inexistent. Aquí podeu llegir la carta que fa quatre mesos, el Consorci Europeu d’Acadèmies de Ciències, Tecnologia i Enginyeria va trametre al comissari Europeu d’energia. A Europa es fa molta recerca en energies renovables però de fet les polítiques energètiques són competència exclusiva dels Estats membres i, lògicament, acaben essent incoherents i fins i tot contradictòries. Per què, a Europa, no apostem més i de manera més coordinada per les renovables i pels cotxes elèctrics i híbrids endollables? Els nostres polítics, saben què és l’EROI?  Quins interessos hi ha, darrera del petroli? Per què Europa no té una política energètica més cohesionada i avançada i basada en vehicles elèctrics i híbrids endollables? Per què no fa una aposta ferma i sense escletxes per les renovables?

Nota: Aquestes dades han estat publicades al número d’abril del 2013 de la revista Scientific American. L’autor explica aquí d’on surten les dades, i aquí podeu trobar els articles més tècnics de la revista “Sostenibilitat”. En concret, els valors actuals de l’EROI per diferents tipus de fonts d’energia són:

  • Hidroelèctrica: més de 40
  • Eòlica: 20
  • Carbó: 18
  • Gasolina i gasoil: 16
  • Gas natural: 7
  • Solar fotovoltaica: 6
  • Biodièsel de la soja: 5.5
  • Petroli de sorres bituminoses: 5
  • Processos de fracking: entre 5 i 16, segons les fonts
  • Nuclear: 5