Entrades amb l'etiqueta ‘espai i temps’

Els electrons i nosaltres

dissabte, 15/12/2018

Al nostre cos tenim uns 17 grams o més d’electrons (vegeu la nota al final). Si els poguéssim posar tots junts farien un bon grapat de partícules.

Sense electrons no existiríem. Els electrons són darrera de totes les reaccions químiques i bioquímiques que conformen el nostre metabolisme i que ajuden, per exemple, a fabricar proteïnes amb la informació de l’ADN. Són també a la transmissió d’informació entre neurones del nostre cervell i a les fibres nervioses.

No fa massa, a partir dels descobriments d’ara fa dos segles (com el de la relació entre magnetisme i electricitat de Michael Faraday), vam veure que els podíem domesticar i fer que treballessin per a nosaltres. Perquè els electrons són dòcils i previsibles. Es mouen quan hi ha una diferència de potencial o quan es troben en entorns amb camps magnètics variables. Això ens ha permès fabricar motors elèctrics, rentadores, neveres, portes automàtiques, robots, ordinadors, telèfons mòbils i una infinitat d’invents quotidians que ens envolten.

L’any 1905, Einstein va formular l’efecte fotoelèctric i va descobrir la profunda relació que hi havia entre els electrons i els seus cosins, els fotons. Els fotons ens porten energia i informació a distància a la velocitat de la llum, escalfant-nos amb la llum del Sol, fent que els nostres ulls puguin rebre i processar imatges, i fent-nos arribar senyals de ràdio i televisió i fins i tot fotos i vídeos dels nostres amics. Gràcies a l’efecte fotoelèctric, els fotons activen determinats electrons del sensor CCD de la càmera del nostre mòbil i, miraculosament, podem fer fotos. Gràcies als electrons, els fotons que ens envia el Sol poden traslladar i moure grans objectes i actuar sobre la matèria, sent els combustibles, per exemple, dels trens d’alta velocitat: només els cal donar energia als electrons de determinades plaques solars que l’aniran propagant fins les catenàries que alimenten els trens. D’altra banda, els fotons de la wifi ens porten informació que podem llegir, veure, i després guardar en un llapis de memòria. Però, quan ho fem, són els electrons de una infinitat de pous de potencial qui ens guarden aquesta informació. Electrons i fotons, fotons i electrons.

L’experiment d’Albert Abraham Michelson i Edward Williams Morley l’any 1887 va ser el primer que va fer trontollar les nostres ingènues teories, en aquest cas sobre els fotons. L’experiment de de Michelson-Morley va demostrar que els fotons van sempre a la mateixa velocitat, ho miri qui ho miri. És l’experiment que va intrigar Albert Einstein fins que, 18 anys després, va acabar formulant la teoria de la relativitat i dient que si la velocitat de la llum era constant (com s’havia comprovat), tot el demés, inclòs el temps, havia de ser relatiu i no invariant. No hi ha ningú privilegiat, a l’univers. Però els fotons, això sí, sempre transmeten la seva informació i energia a velocitat constant. Una velocitat, la de la llum (c), que no es pot superar i que va resultar ser una constant de l’univers. No és possible enviar informació a una velocitat més gran que c. Per això, mai podrem saber com són ara mateix les galàxies llunyanes que veiem al cel de nit.

I els electrons? El 1913, Niels Bohr va proposar un model atòmic senzill que recorda el model planetari de Copèrnic. En ell, l’àtom és com un petit sistema solar amb el nucli al centre i un núvol d’electrons que hi donen voltes. Els electrons eren com boletes que anaven orbitant el nucli a diferents nivells d’energia. Quan baixaven a òrbites més interiors, emetien energia en forma d’un fotó. Quan captaven un fotó que arribava, agafaven la seva energia i pujaven a una òrbita més externa. Si captaven més fotons i energia, podien fins i tot lliurar-se de l’atracció del nucli i quedar lliures, creant un corrent elèctric quan la matèria era conductora.

Una de les primeres sorpreses que ens donen els electrons, però, és la seva habilitat per a ser màgics. Ara sabem que la teoria de Bohr no és certa, perquè no hi ha òrbites i mai sabem on són, els electrons. Hi són, són la causa de totes les reaccions químiques, tenen massa, però no els podem trobar. Mai podrem agrupar un grapat d’electrons. I Heisenberg ens explica que aquests electrons sembla que no existeixen sempre. Només existeixen quan algú els mira o, més ben dit, quan interaccionen amb una altra cosa. Són màgics. Es materialitzen en un lloc, amb una probabilitat calculable, quan topen contra algun cos. Els salts quàntics d’una òrbita a una altra són la seva manera de ser reals. Un electró és un conjunt de salts d’una interacció a una altra. Però quan ningú no els destorba, els electrons no són a cap lloc concret. No són enlloc. De fet, sembla que fins i tot apareixen i desapareixen a l’espai buit. Perquè l’espai buit és alguna cosa, no és pas el no-res. Ho diu el fet que l’espai sigui tridimensional en lloc de tenir, per exemple, dimensió quatre, perquè el no-res no té dimensions. I el que estem descobrint és que l’espai buit és l’escenari en el que poden créixer la geometria, les matemàtiques, la física… i els electrons, com bé diu en Carlo Rovelli citant Werner Heisenberg.

Però la darrera sorpresa d’aquests electrons que creiem tenir tan ben domesticats ens va arribar fa poc, el 2015, de la mà d’un grup de físics de la universitat de Delft (Ronald Hanson i altres; aquí teniu l’article científic que van publicar a la revista Nature). L’experiment va confirmar la hipòtesi de l’any 1964 de John Bell i ens va demostrar que els electrons i altres partícules elementals experimenten un fenomen que s’anomena “entrellaçament” que fa trontollar tot el que pensem sobre el funcionament de l’univers. Si dos electrons emeten fotons que es troben i queden entrellaçats, això fa que els dos electrons quedin també entrellaçats en el mateix instant, encara que es trobin a milions de quilòmetres de distància l’un de l’altre. I aquí apareix la màgia de l’entrellaçament, que fa que aquestes dues partícules passin a tenir una mena de telepatia subatòmica: si algú mesura una propietat d’un dels electrons (l’anomenat spin, per exemple, que té dos possibles valors) i immediatament algú altre mesura la mateixa propietat a l’altre, el valor que mesurarem al segon electró serà sempre el contrari del valor que han mesurar abans a l’altre. El segon electró, entrellaçat al primer, “sap” instantàniament com s’ha de mostrar quan se’l mesuri. La informació, entre electrons i partícules entrellaçades, es transmet a l’instant, en clara contradicció amb el que sabem que res pot anar més ràpid que la velocitat de la llum (vegeu alguns detalls de l’experiment a la nota al final). Com s’entén, això? Quin és aquest espai-temps que diu a tothom, inclosos als fotons, que no es pot superar la velocitat de la llum, a la vegada que permet que les partícules entrellaçades la superin del tot? Hi ha qui diu que quan els electrons i altres partícules s’entrellacen, es fonen i passen a ser una única partícula que es manifesta a dos llocs a la vegada. Però, com s’explica això de tenir un electró que s’ha desdoblat i materialitzat en dues posicions que poden trobar-se a anys llum de distància una de l’altre? Què és l’espai i què és el temps?

L’entrellaçament ens fa veure que certes propietats dels electrons i altres partícules no poden existir abans que les  mesurem. Diuen que l’acte de mesurar és el que realment crea aquestes propietats. I veiem que hi ha propietats que es creen a distància, instantàniament, saltant-se els principis que fins ara teníem: que res es pot transmetre a velocitat més gran que la de la llum. Els electrons entrellaçats representen el gran misteri de les parelles telepàtiques. A diferència dels seus cosins fotons, ràpids però previsibles.

La imatge de dalt l’he obtingut a partir de les d’aquesta pàgina web de Ryan Whitwam, que mostra els electrons que enllacen àtoms d’hidrogen. La imatge va ser obtinguda el 2013 amb un microscopi de força atòmica.

Les coses, i sobretot els electrons, no són tan deterministes com voldríem. Richard Feynman, a les seves lliçons de física, deia que amb els electrons i altres partícules no podem fer altra cosa que calcular probabilitats, i que hem de sospitar amb molt fonament que aquesta limitació ens acompanyarà sempre perquè és un fet essencial del món subatòmic. I Ronald Hanson reconeix que tot això de l’entrellaçament supera la nostra capacitat actual de comprensió: l’univers és definitivament estrany. I és que la natura és així, encara que no ens agradi.

——

Per cert, parlant de coses que sabem fer amb els electrons i l’electricitat, la Rosa Montero diu que el 70% de la inversió en infraestructures ferroviàries es dedica a l’alta velocitat, que només és utilitzada per un 4% de viatgers. En canvi, els trens de rodalies, regionals i de mitja distància, que transporten al 96% dels usuaris, reben menys d’un terç del pressupost. A més, la modernització d’un quilòmetre de via convencional (fins arribar a velocitats mitjanes de 165 Km/h) és 10 vegades més barata que la construcció d’un quilòmetre d’AVE.

——

NOTA: La massa en repòs d’un electró és aproximadament 9,109 * 10^(-31) Kg., que correspon a 1/1836 de la massa del protó. La massa del neutró és molt similar a la del protó, s’altra banda. Tenint en compte que el nostre cos té entre un 60 i un 65% d’aigua, i que bàsicament som hidrogen, oxigen i carboni en proporcions del 10%, 65% i 19,37% respectivament (la suma d’aquests tres elements és el 94,37% del nostre pes), és fàcil fer un càlcul aproximat del pes total dels electrons que ens conformen. Com que el pes atòmic de l’hidrogen és 1, la proporció d’electrons deguda als àtoms d’hidrogen és de 0.1 / 1836, o sigui, 5.45 * 10^(-5). El mateix càlcul amb l’oxigen dona dona una proporció en pes d’electrons de (0.65 * 8/15.999) / 1836 = 1.77 * 10^(-4), atès que el seu pes atòmic és de 15,999. I si ho fem amb el carboni, el resultat és (0.1937 * 6/12) / 1836 = 0.53 * 10^(-4). Sumant les tres proporcions, veiem que per cada 10 quilos del nostre pes, tenim 2,845 grams d’electrons que provenen d’àtoms d’hidrogen, oxigen i carboni. Val a dir que el total és una mica més gran, perquè caldria sumar-hi els electrons dels elements més complexes que també configuren les molècules de la resta del nostres cos (molècules que en total suposen 563 grams per cada 10 Kg. de pes).

L’experiment de Ronald Hanson i els del seu grup va demostrar que, en l’entrellaçament, no hi ha variables ocultes (no hi ha fenòmens que ara no puguem detectar però que tal vegada en el futur podríem arribar a mesurar), i que, per tant, l’entrellaçament és una propietat real que tenen els electrons, els fotons, i altres partícules. L’experiment, màgic i sorprenent, va ser aquest: a dos laboratoris A i B separats 1280 metres a Delft, els científics van experimentar amb electrons que havien quedat atrapats prop d’alguns àtoms de nitrogen que hi havia, a tall d’impuresa, en dos diamants (un a A i l’altre a B). Amb impulsos de làser, anaven activant reiteradament els electrons de manera que, tant l’electró del diamant de A com el del diamant de B emetien un fotó cada un d’ells a cada impuls làser. Els fotons es dirigien a un tercer laboratori C entre A i B, on algunes vegades es trobaven en un mirall semitransparent i quedaven entrellaçats. Llavors es produïa un fenomen sorprenent, que és l’anomenat “intercanvi d’entrellaçament”: de manera immediata, quan els dos fotons s’entrellaçaven a C, els seus dos emissors, els electrons als diamants de A i B, quedaven també entrellaçats. És com si, quan uns joves formen parella, els seus pares quedessin automàticament aparellats entre sogres. Tot seguit, es mesurava l’spin de l’electró de A i també es mesurava l’spin corresponent de l’electró de B. Com que no hi havia cap possibilitat de transmetre informació entre A, B i C (es tractava de demostrar que l’entrellaçament es transmet de manera instantània), el que es va fer és usar tres rellotges atòmics d’alta precisió, un a cada lloc, i guardar localment a tres ordinadors a A, B i C, el temps i el resultat de cada experiment. Si a A i B es guarda el moment de l’emissió de cada fotó, els instants de temps en que es fan les mesures i els valors dels spin que s’han mesurat, i a C es guarda els instants de temps en els que s’ha pogut aconseguir un entrellaçament exitós de fotons, es pot fer una anàlisi a posteriori i només considerar vàlids els cassos en que hi ha hagut entrellaçament de fotons a C i en els que les mesures d’spin als corresponents electrons a A i B s’han fet amb una diferència de temps de menys de 4,27 microsegons (el temps que la llum tarda en recórrer els 1280 metres). D’aquesta manera ens assegurem que la mesura feta a A no ha pogut arribar a B i que la mesura que hem fet a B no s’ha pogut transmetre a A. En tot cas, cal dir que l’experiment és una mica més complicat perquè els spins dels electrons es poden mesurar en diferents eixos i perquè cal garantir la màxima neutralitat durant el càlcul de les correlacions (veure l’article).

El miracle dels axons

divendres, 12/10/2018

En Xavier Rubert de Ventós, a un dels seus llibres de divulgació filosòfica, explica que el nostre “Jo” no és més que l’encontre entre els dos sistemes genètics dels nostres pares a una determinada ciutat, una llengua, un sistema social determinat, un parell d’amors, una desena de familiars, una vintena d’amics i una cinquantena de llibres dels quals, com diu tot citant Valéry, “no he retingut ni el millor ni el pitjor, sino que n’ha quedat allò que ha pogut”. El resultat, diu, és que els estímuls que ens arriben s’ens reflecteixen amb un angle i intensitat peculiars i únics.

Som qui som gràcies al nostre passat, i el nostre passat és memòria. Però també sabem que la memòria i els records surten de la reactivació de grups específics de neurones que tenen connexions sinàptiques persistents entre elles. Els axons i les sinapsis són, per tant, una part essencial del nostre “Jo”. La nostra identitat sorgeix d’una infinitat d’interaccions sinàptiques.

El cervell humà té 86 mil milions de neurones, de les quals, 16 mil milions són al còrtex. En canvi, en total només necessita una energia de 25 watts. En aquest vídeo, Anders Lansner ens explica que el nombre de connexions sinàptiques entre els axons de les nostres neurones és deu mil vegades més gran que el nombre de neurones, i que la longitud total dels axons amb mielina d’un cervell humà adult és de cent vuitanta mil quilòmetres. O sigui, que si connectéssim els axons dels cervells de dues persones, tindríem un fil que arribaria a la Lluna. Podem dir que, en un cert sentit físic, l’amistat i l’amor arriben a la Lluna.

No és fàcil imaginar aquests nombres tan grans. Podem pensar que el nombre de neurones al còrtex és el doble que el nombre d’habitants al món, i això ja ens dona una idea del que tenim dins el nostre cap. Però, com ho fem per a representar-nos mentalment el nombre de connexions neuronals?

Diuen que tot l’univers es quantifica en base a tres escales, cada una d’elles com la que veieu a la imatge de dalt (que mostra les escales Potemkin, de 192 esglaons; la imatge la podeu trobar a aquesta pàgina web). Són l’escala de l’espai, la del temps i la de la complexitat i la organització. L’escala de l’espai és la del sistema mètric decimal que vam aprendre a l’escola. Quan érem petits, ens explicaven que un decímetre són 10 centímetres, que un metre són 10 decímetres, i que un decàmetre són 10 metres. Malauradament, segurament no vam ser conscients de tot el que implicava la notació numèrica posicional i el concepte d’ordre de magnitud (en aquest cas, en base 10). Posant i traient zeros o “corrent la coma”, fàcilment ens podem passejar per tota la realitat i anar del més gran al món microscòpic. A l’escala del sistema mètric, cada esglaó és 10 vegades més gran que el de sota i 10 vegades més petit que el del seu damunt. Si posem noms a cada esglaó i ens situem a l’esglaó d’un metre, quan baixem al de sota, som al del decímetre. Si baixem tres esglaons a partir del metre, ens trobem als mil·límetres, i si en canvi en baixem 6, som al de les micres, al món microscòpic del bacteris. Ara bé, si pugem tres esglaons, som als quilòmetres. I de fet, només en podrem pujar 26, perquè la mida de l’Univers observable és de l’ordre de 10^26 metres (un 1 amb 26 zeros), que són els 26 esglaons. No és gaire, oi? Pujant i baixant 26+6 esglaons passem de la mida d’un bacteri a la de tot l’Univers. La longitud total dels meus axons (igual que la distància a la Lluna) la trobo pujant només 8 o 9 esglaons a partir del metre. Els esglaons, treballant de 10 en 10, arriben on calgui sense problemes.

L’escala del temps és similar. Si ens situem a l’esglaó d’un segon, el de sota és el de les dècimes de segon i el de sobre representa 10 segons. És fàcil veure que en aquesta escala només podré pujar 17 o 18 esglaons, perquè l’edat de l’Univers és de l’ordre de 13 mil milions d’anys i cada any són 31.536.000 segons. No existeix cap període de temps que s’hagi d’escriure, en segons, amb més de 18 xifres en base 10.

Però l’escala de la complexitat és la que ens pot ajudar a entendre el cervell humà. Si l’esglaó de baix de tot representa una neurona, el nombre de neurones que tenim és quasi a l’esglaó 11, i el nombre de connexions sinàptiques es troba a l’esglaó 14 (un 1 seguit de 14 zeros). Curiosament, aquest nombre de connexions al nostre cervell és el mateix que el nombre de bits d’informació a tots els llibres de la biblioteca del Congrés dels Estats Units. Teòricament, hauríem de poder recitar de memòria qualsevol paràgraf de qualsevol llibre d’aquesta (o qualsevol altra) biblioteca…

El nombre d’àtoms a l’Univers és inferior a 10^82 (tota la matèria es troba en els primers 82 esglaons de complexitat, si no anem al món subatòmic), i la informació que portem al genoma, codificada en 6 x 10^9 nucleòtids, correspon a 1,5 Gigabytes (esglaó 10, si pensem que la unitat és el bit d’informació). És clar que la genètica no ho és tot, perquè és impossible que el nostre ADN (esglaó 10) pugui definir el conjunt de les nostres connexions sinàptiques, que es troben a l’esglaó 14 (10^14; vegeu la nota al final). I la cosa encara és pitjor, perquè el 99,9% del nostre genoma és comú a tots els humans, i allò que ens diferencia és ben poc (uns 125 Megabytes d’informació, a l’esglaó 9). Aquest és el miracle dels axons: quan s’han de connectar, rarament miren el genoma. Les connexions sinàptiques entre axons són nostres, no dels nostres pares. Allò que modela i conforma la nostra xarxa d’interacció entre neurones (i el nostre “Jo”) són els estímuls que ens arriben i allò que hem viscut, com bé deia en Xavier Rubert de Ventós.

——

Per cert, la Olivia Muñoz-Rojas diu que l’habilitat que alguns polítics i protagonistes mediàtics tenen per a mentir sense posar-se vermells, convida a reflexionar sobre el rubor, que cal reivindicar perquè és expressió de vida. Comenta que Darwin ja deia que no és el sentiment de culpa el que ens posa la cara vermella, sinó la sospita que altres pensin o sàpiguen que som culpables.

——

NOTA: Al naixement, la quantitat de sinapsis per neurona és de 2.500, però als dos o tres anys, ja és de 15.000 sinapsis per neurona. La vida l’experiència ens connecta axons i neurones.

Escolteu les dones i els homes de ciència

divendres, 5/10/2018

Ara fa set anys, en una entrevista, el pintor Antonio López va dir això: “La cosa es posarà seriosa. Caldria escoltar els homes de ciència més que als banquers. Així ha ser pel bé de tots”. Crec que tenia tota la raó.

Sembla que els científics estiguin callats, massa callats. No és cert. Ho expliquen tot, perquè la ciència, a més de basar-se només en fets comprovats, és oberta i defensa el principi d’universalitat. Tots els resultats científics es sotmeten a un procés anònim de revisió i seguidament, si són acceptats, es publiquen en revistes i congressos que tothom pot consultar i llegir. El principi d’universalitat implica que qualsevol nova troballa és a l’abast de tothom i per tant pot ser usada per a millorar les condicions de vida de qualsevol persona del món. Els científics parlen, i sobretot escriuen, de manera que tot el que diuen es pot llegir. Penseu en els darrers premis Nobel de medicina, física o química. Busqueu, i tindreu informació sobre els seus descobriments.

Es pot argumentar que la ciència és fosca, i que aquests escrits no són fàcils d’entendre. És cert. El llenguatge científic és molt precís, i això fa que no sigui accessible a tothom de manera immediata. Ens cal un esforç molt més gran de divulgació per a que la veu dels científics arribi a tothom. Però això no treu cap mèrit a la ciència: gràcies al fet que és oberta i universal, tothom es pot beneficiar dels seus resultats. L’ús ètic de la ciència ens pot salvar.

Fa poc, en una conferència, una estudiant va preguntar com es podia justificar el fet que determinats departaments d’Universitats japoneses (i d’altres països) s’haguessin posat a treballar en projectes militars finançats pels seus ministeris de defensa. La meva resposta personal va ser que jo creia que els qui treballaven en aquest tipus de projectes no eren científics, i que per tant no feien ciència. Perquè la recerca militar és secreta per naturalesa, i per tant vulnera aquest principi bàsic de la ciència: la universalitat. Podríem dir que tot allò que no és publicable i usable per al benefici de tota la humanitat, simplement no és ciència.

Tornant a l’ètica, hem de dir que la ciència evita ficar-se en aspectes transcendents, com bé ens explica en Michael Shermer. No li cal. Com diu en Shermer, el principi de ser amable i ajudar als altres ha estat una estratègia exitosa durant tota l’evolució humana, combatent a la vegada l’entropia en base a fer coses “extròpiques” i usant l’energia per ordenar, construir i sobreviure. Però és que a més, el principi d’universalitat ens porta directament a veure que hem de respectar la dignitat de tothom. Perquè l’objecte d’aquesta ètica que emana de la ciència són totes i cada una de les persones del planeta. Els que sofreixen fam o violència i els qui malviuen o tenen limitada la seva llibertat són persones que ara mateix viuen al nostre planeta i per tant, prop nostre. El seu sofriment l’està causant algú, que n’és el responsable. Són persones que ara mateix sofreixen per culpa d’altres persones, i que tenen dret a que allò que ara és injust, es corregeixi ara. Aquest és el principi ètic essencial, com indica en Michael Shermer. Perquè els drets de totes les persones impliquen deures. El repte real que tenim és el de millorar les condicions de vida de gairebé vuit mil milions de persones, assegurant a la vegada la sostenibilitat planetària. És un repte que només es pot resoldre des d’una visió ètica a nivell global, amb l’ajut d’eines que ens poden subministrar la ciència i la tecnologia, perquè els gestors dels grans negocis, els “banquers” de l’Antonio López, fins ara només ho han empitjorat i ja no ens serveixen.

Fa poc, vaig quedar sorprès per una frase que vaig llegir a la versió impresa d’un article de l’Ignasi Vidal-Folch on parlava de la venda de bombes “de precisió” a l’Aràbia Saudita. La frase era aquesta: “no hi ha una solució fàcil en aquest conflicte entre economia i ètica”. L’anàlisi d’aquest oxímoron que posa al mateix nivell principis ètics i benefici econòmic, explica moltes coses. M’agrada pensar que, d’aquí a deu o vint anys, qui analitzi aquesta frase ho veurà com un conflicte, ja passat, entre aquell vell sistema mundial de dominació basat en el negoci (la civilització dels “banquers” de l’Antonio López, la dels beneficis, les grans corporacions, les grans desigualtats i la dels amos del món) que haurem estat capaços d’aturar abans del suïcidi com espècie, i la una civilització emergent basada en la paraula, el diàleg, els drets humans i la cura de totes les persones i del planeta.

El progrés i el benestar que promouen la ciència i la tècnica han d’arribar a totes les persones que habiten la Terra, per damunt d’hipocresies, negocis i interessos. Cal protegir aquest planeta, que és de tots, i limitar tot allò que pot fer-li mal. No escolteu els banquers. Escolteu els homes de ciència i, sobretot, les dones de ciència.

La imatge de dalt és d’aquest vídeo, que mostra la feina d’Afroz Shah.

——

Per cert, la Carme Torras diu que els robots actuals ens porten a pensar en termes d’ètica. Explica que els anomenats robots socials plantegen un ventall de qüestions ètiques molt amplies i complexes, que no podem deixar de plantejar, debatre i resoldre.

El real i l’imaginari

dijous, 2/03/2017

Com deia l’Anthony Gottlieb fa uns mesos al New York Times, la ciència actual s’està tornant cada cop més estranya. Einstein es neguitejava perquè, segons la mecànica quàntica, sembla que Déu estigui jugant als daus amb l’Univers. Però ara sembla, en paraules d’en Gottlieb, que hàgim passat del casino i els daus a la màgia. Perquè resulta que segons les darreres teories cosmològiques, és probable que tota la matèria de l’univers, inclosos nosaltres, vinguem del no-res.

Els físics diuen que el món és una proliferació contínua i bellugadissa d’entitats efímeres que es creen i desapareixen sense parar. Segurament és (i som) un conjunt de vibracions, una munió d’esdeveniments i de relacions, no de coses. Ens ho explica en Carlo Rovelli en un llibre que ja he comentat alguna altra vegada. En Rovelli ens parla també de la teoria dels llaços, segons la qual l’espai, que no és continu, està format per petits grans o quàntums d’espai, cent mil milions de milions de vegades més petits que el més petit dels nuclis atòmics. Aquests minúsculs grans no són enlloc, no poden ser enlloc perquè ells són l’espai. I el temps? Sabem què és el temps? La veritat és que és un concepte que tampoc acabem d’entendre, entre altres raons perquè no és únic: podem parlar del temps psicològic que experimentem quan recordem el passat, del temps termodinàmic que va passant mentre la sopa es refreda, o del temps cosmològic de l’univers en expansió. Però hi ha coses que la física sí que ens explica una mica. Gràcies a Ludwig Boltzmann i a molts físics del segle XX, ara sabem que només hi ha diferència entre passat i futur quan hi ha calor, perquè la distinció entre futur i passat es basa en que la calor va de les coses calentes a les més fredes. I, per què hi va? Per què la sopa que tenim al plat s’acaba refredant enlloc d’escalfar-se encara més? De fet, la resposta a aquesta darrera pregunta és molt sorprenent, i es troba a la base de tota la física moderna: la calor va del que és calent al que és fred per atzar. Perquè en els xocs entre molècules d’un objecte calent i molècules d’un de fred, és molt més probable que les primeres passin energia a les segones que no pas que veiem el fenomen contrari. La calor no va de les coses calentes a les fredes obligada per cap llei absoluta, sino que hi va només amb gran probabilitat, com ens deixa clar en Carlo Rovelli. Sabem que la sopa al plat es refreda, però hi ha una petita probabilitat, molt i molt petita, que algun dia veiem que s’escalfa encara més. Des de fa més d’un segle, la física ha hagut d’abandonar les certeses i acceptar que l’únic que podem saber de molts fenòmens del món super microscòpic és si són més o menys probables.

En resum: la matèria, tan real i palpable, és un conjunt de relacions i vibracions. L’espai són grans que no es troben enlloc, i el temps sorgeix de la probabilitat. Quasi res, oi?

Parlant de probabilitats, el darrer llibre que ha escrit en Sean Carroll, “The big picture”, força polèmic i que tot just he començat a llegir, és tot un viatge que va del més ínfim al món que experimentem, veiem i sentim. Un viatge, guiat per la física i les probabilitats, per aquest món d’extraordinària bellesa i diversitat que gaudim cada dia. Ara sabem, diu Carroll, que tot el que hi ha, objectes, plantes, animals i nosaltres, està fet amb molt pocs tipus de partícules elementals unides amb molts pocs tipus de forces bàsiques: el món i nosaltres mateixos som agregats amb un nombre astronòmic de molt poques peces: som quarks, gluons i electrons. Carroll defensa a més el que anomena “naturalisme poètic”, afirmant que tot el real és el que hi ha a la natura i en que no hi ha res fora de la natura. Si escalem les lleis fonamentals de la natura al món, als planetes i a nosaltres, Carroll argumenta que podem arribar fins i tot a estimar la probabilitat que existeixin Déu, l’ànima i la vida després de la mort. Segons comenta també en Michael Shermer, la conclusió de Sean Carroll és que aquestes probabilitats són molt petites.

La conclusió de Sean Carroll és contundent i a la vegada respectuosa. No parla categòricament, només ens explica el que és probable i el que no ho és. I el cert és que nosaltres tampoc som gaire probables. En Tim Radford diu que és clar que els àtoms no tenen vida, però que poden formar agregats molt i molt especials que anomenem “tu i jo”. La vida és un petit i efímer episodi que capgira temporalment aquest viatge inexorable de l’univers cap l’increment constant de la seva entropia, imposat pel segon principi de la termodinàmica. La vida és el fruit quasi màgic de la tendència metabòlica (hereva de la química) a construir, crear i complicar-se. Tot, gràcies a les lleis de la física.

El cert és que no sabem què som. Sabem que som éssers conscients perquè podem llegir aquest i altres textos, però curiosament ningú sap què és la consciència ni la pot definir, com bé ens recorda en Tim Radford. Ara bé, el que sí sabem és quins són els nostres components, i hem pogut descobrir algunes de les lleis d’aquesta natura de la que som part inseparable.

Aristòtil pensava que la Terra era al centre de l’univers i que estava formada de només quatre elements: terra, aigua, aire i foc. També creia que el Sol, la Lluna i els estels eren divins i perfectes, fets de matèria no terrenal: la quinta essència o èter. En vint segles hem avançat una mica, i ara hem vist que tot és fet de quarks, electrons i gluons amb un bany energètic de fotons. Vam començar amb quatre elements i al cap de 23 segles en tenim uns altres quatre. Això sí, amb una diferència: sabem que no hi ha quinta essència i que tot, Cel i Terra, són fets de les mateixes partícules elementals.

L’important, ens diuen els físics, és separar bé el que hem arribat a saber i que hem pogut comprovar i constatar, del que imaginem i suposem. La humanitat, quan era jove, creia en la quinta essència, i nosaltres quan érem petits creiem en els reis mags d’orient. Després hem vist que els reis no són tan mags, que tot l’Univers és fet del mateix tipus de matèria, i que no hi ha fantasmes ni bruixes. I és que les coses són molt més senzilles quan les sabem veure sense prejudicis. És clar que tothom té dret a pensar en mites imaginaris, però és bo saber que la ciència i els físics ens ajuden a desgranar el real d’allò que és, amb molt alta probabilitat, imaginari.

———

Per cert, en Bru Rovira diu que el que s’hauria de debatre a la ONU i a les cimeres internacionals és si primer és la indústria i després la política, o bé si la política decideix sobre la indústria. És a dir, cal debatre qui mana en els assumptes de la pau i l’ordre.