Entrades amb l'etiqueta ‘Euclides’

Els grecs i l’abstracció

divendres, 11/01/2019

Tenim una paret, com la que conté els punts A i C de la imatge. I ara, volem construir una segona paret a partir del seu punt final A, de manera tal que aquest segon tram formi angle recte amb la paret original A-C.

Si el terreny és pla, podem determinar la direcció de la segona paret amb un mètode, poc conegut, que només requereix disposar d’una corda i quatre estaques: clavem una primera estaca a A, lliguem una segona estaca al final de la corda, la tibem, i clavem aquesta nova estaca en el punt B (tot mirant que la distància de B a la paret A-C sigui menor que la llargada de la corda). Desclavem A i, mantenint l’extrem de la corda a B, anem girant i marcant al terra el cercle vermell de la imatge. Tornem a deixar A al seu lloc inicial, i a més, clavem la tercera estaca C a la intersecció entre el cercle i la paret. Finalment, mirant el punt B des de C, posem la darrera estaca D en el punt del cercle que veiem alineat amb B i C. Amb aquest algorisme d’estaca i corda, podem garantir que la direció entre A i D forma angle recte amb la paret original. Només cal anar fent paret des de A en direcció cap a D.

El que acabem de veure és una recepta pràctica (un algorisme) per a resoldre el problema, molt habitual en el camp de la construcció, de fer cantonades en angle recte. Les receptes matemàtiques per a resoldre determinats problemes no són cap novetat, però. Els egipcis i els babilonis ja en tenien fa 3.800 anys, i les feien servir en molts moments de la seva vida quotidiana que anaven des del càlcul d’impostos a la construcció de temples i ciutats passant per operacions comercials. Val a dir que coneixem la matemàtica babilònica gràcies a les més de 400 tauletes d’argila que els arqueòlegs han anat trobant des de mitjans del segle XIX. Són tauletes que donen solucions funcionals a problemes concrets, amb recursos matemàtics força sofisticats com fraccions, equacions quadràtiques i cúbiques i ternes d’enters que cumpleixen el teorema de Pitàgores. És força impressionant, si pensem que estem parlant bàsicament del periode comprès entre el 1800 a.C. i el 1600 a.C.

La civilització babilònica va acabar amb la caiguda del seu imperi, l’any 539 a.C., poc després de la mort de Tales de Milet l’any 546 a.C. I alguna cosa molt gran va passar en aquelles dècades del segle VI abans de Crist, entre la joventut de Tales (cap al 600 a.C.) i la seva mort. Perquè aquells anys, de la mà de Tales i altres pensadors que han caigut en l’oblit, els grecs van descobrir l’abstracció matemàtica i van començar a crear demostracions i teoremes. Hereus del coneixement matemàtic dels babilonis i egipcis, els grecs van fer el gran salt.

De fet, cal dir que s’ha perdut tot el que va escriure Tales de Milet (que va viure aproximadament entre el 623 a.C. i el 546 a.C.). En sabem d’ell per alguns relats d’Aristòtil així com pel llibre dels Elements d’Euclides, que cita les seves troballes en el camp de la matemàtica i de la geometría. Gràcies a Euclides sabem que fa més de 2500 anys, un dels 7 savis de Grècia, Tales, va deixar de pensar en com resoldre problemes concrets i va demostrar teoremes que, a més de resoldre problemes, ajudaven a entendre les lleis amagades de l’univers.

El que va demostrar Tales de Milet és que, donat qualsevol cercle, si considerem dos punts qualsevols diametralment oposats com poden ser els C i D de la imatge de dalt, per qualsevol altre punt A del cercle, l’angle entre A-C i A-D és recte. Ho podeu veure clarament en aquesta animació de Wikimèdia. És l’anomenat teorema de Tales, que és considerat el primer teorema de la història de la humanitat. La demostració, molt elegant, la teniu a la nota al final. Tot deriva d’una cadena d’afirmacions lògiques, cada una basada en l’anterior i que comencen en ben pocs axiomes, com bé sabem gràcies a Euclides. I acaba en un resultat absolutament general i abstracte que és cert per a tot cercle, per a tota parella de punts diametralment oposats, i per a tot altre punt A. Tres “per a tot” que ens mostren la indiscutible bellesa del descobriment de Tales. Perquè, com diuen, els teoremes formen part de les poques veritats eternes que els humans anem descobrint.

El teorema de Tales és d’una elegancia indiscutible. Només pensant i a partir d’uns quants axiomes (tal com ho va formalitzar Euclides dos segles després), va descobrir una llei que relacionava els angles rectes dels quadrats i rectangles amb la uniforme perfecció dels cercles. Podem tenir dubtes de si Euclides va atribuir a Tales alguns descobriments que tal vegada no eren seus, Però el que sí és clar és que al segle VII a.C. no hi ha proves de l’existència de raonament abstracte, i en canvi quan es van escriure els Elemants al segle III a.C., l’abstracció matemàtica estava totalment consolidada. La revolució de l’abstracció va ser obra dels grecs. El pensament matemàtic abstracte, els axiomes, les demostracions i els teoremes, són regals que ens van fer els grecs, justament (i no és casualitat) mentre anaven creant la filosofía.

Per cert, la imatge de satèlit de dalt mostra les terrasses de pedra seca de Cadaqués en el punt de coordenades (42,287682, 3,26407) pel que fa a latitud i longitud.

——

Per cert, en Joseph Stiglitz parla del “green new deal” dels EEUU, i diu que si no abordem ara els reptes que presenta el canvi climàtic, la càrrega que haurà de suportar la pròxima generació serà enorme. Diu que val més deixar una herència de deutes financers, que d’alguna manera podem gestionar, que no pas enfrontar els nostres fills a un possible desastre mediambiental impossible de gestionar. I de fet, una de les coses que alguns proposen per a tenir ingressos en el “green new deal”, és la d’encongir el complex militar-industrial reduint la despesa militar en un 50%, tancant a més les bases militars dels EUA al voltant del món i creant una nova ronda d’iniciatives de desarmament nuclear.

——

NOTA: El teorema de Tales diu que en qualsevol cercle, si tenim dos punts C i D diametralment oposats, per qualsevol altre punt A de la vora del cercle es compleix que l’angle CAD amb vèrtex A és recte (utilitzo la notació clàssica pels angles, amb tres punts on el vèrtex és el punt del mig). En altres paraules, ens diu que A-C és sempre perpendicular a A-D. Tales ho va demostrar dibuixant el segment que uneix A amb B, i analitzant els triangles ABC i ABD. El primer que va constatar és que tos dos triangles són isòsceles, perquè la longitud dels tres costats A-B, B-C i B-D és idèntica i igual al radi del cercle. Per tant, l’angle ACB és igual a l’angle CAB; l’anomenaré alfa. De la mateixa manera, l’angle BAD és igual a l’angle BDA; l’anomenaré beta. Ara, imaginem que dibuixo una recta paral·lela a C-D que passi pel punt A. Marquem-hi dos punts: C’ a la banda de C, i D’ a la banda de D. L’angle C’AC és igual al ACB, i el D’AD és igual a l’angle BDA, perquè aquesta és la propietat que compleixen les parelles d’angles alterns interns, com bé ens va explicar Euclides. Ara, només cal mirar els angles al voltant de A i veure que les 5 direccions C’-A, C-A, B-A, D-A i D’-A inclouen 4 angles que han de sumar 180 graus perquè C’-A és oposada a D’-A. Per tant, 2*alfa + 2*beta = 180. I d’aquí, Tales va concloure que l’angle CAD = alfa + beta = 90. El seu resultat va ser, és i serà vàlid per qualsevol cercle i per qualsevol posició del punt A. És general, abstracte i perpetu.

Allò que és geomètric

divendres, 9/03/2018

Què és geomètric, i què no ho és? Si poseu “pintura geomètrica” en un cercador, us trobarà, a la web, fotos com la de dalt de la imatge, que tots veiem com una composició geomètrica. És un conjunt simple, format per superposició de figures quasi-rectangulars de diversos colors. Jo diria que la seva característica fonamental no és el fet de ser geomètric, sino la seva bidimensionalitat.

Mireu en canvi el quadre de baix, d’Edward Hopper, que és un exemple paradigmàtic del caràcter geomètric tridimensional de tot el que ens envolta. Hi podem veure les ombres degudes a l’orientació local de la superfície del terreny, que permeten deduir la posició del Sol, dalt a l’esquerra però no molt alta; les siluetes (aquells punts amb vector normal perpendicular a la direcció que els connectava amb l’ull de Hopper), les curvatures i plecs del terreny, les zones de curvatura Gaussiana positiva o negativa, algunes zones localment desenvolupables i fins i tot planes… Poca cosa es pot dir del caràcter geomètric del quadre de dalt, mentre que es podria escriure tot un llibre sobre la poesia que traspua l’obra de Hopper.

Hi ha un fet cultural força trist: no estem gaire preparats per a gaudir de la bellesa de les formes 3D, excepte, això sí, les humanes. Si ens demanen que mostrem alguna cosa geomètrica, és força probable que agafem un llapis i fem un dibuix 2D amb traços rectes i uns quants angles. Deu ser per això que els escultors són més escassos que els pintors i dibuixants.

Al món i la natura hi ha molt poques rectes. La geometria, aquesta ciència de la mesura del món que hem creat, ha de tenir eines per estudiar i entendre totes les formes corbades que ens envolten. La separació entre corbes i rectes és la que distingeix el món natural de l’artificial, perquè les rectes les vam inventar els humans. Van ser les rectes dels temples inques, egipcis, maies i babilònics, les que van inspirar Euclides quan, en un exercici d’abstracció, les va imaginar com continuació infinita del camí més curt que uneix dos punts donats.

I no es por parlar de geometria, de la geometria de veritat del món natural, sense parlar de Carl Friedrich Gauss. Gauss va ser un geni. Es diu que, als tres anys, va corregir un error en els càlculs financers del seu pare. I als set anys, a l’escola, va descobrir la formula per a calcular la suma d’una progressió aritmètica. De jove, mentre feia de cartògraf, va crear i escriure tota la disciplina que ara es coneix amb el nom de geometria diferencial, junt amb el concepte de curvatura de Gauss que porta el seu nom. El seu descobriment que les característiques de curvatura d’una superfície es poden deduir de manera completa només mesurant angles i distàncies i sense “mirar-la des de fora” és el que ara ens permet validar experimentalment la curvatura de l’espai que va plantejar Einstein a la seva teoria de la relativitat general, i la que ens ajuda a gaudir de tots els matisos corbats quan mirem el meravellós quadre de Hopper.

Tot és geometria. La nostra realitat geomètrica, tan similar a la dels altres animals, ens ajuda a entendre que som natura i que som geometria. Tenim una forma exterior quasi-simètrica, amb un pla de simetria que separa dreta i esquerra que fa que les nostres mans, en lloc de idèntiques, siguin enantiomorfes. La similitud en la disposició dels nucleòtids al llarg de l’hèlix de l’ADN (tot un prodigi geomètric absolutament tridimensional) fa que tots els humans siguem essencialment similars, i ens explica, com molt bé va fer Albert Einstein, que totes les persones que habitem el món som iguals pel que fa als nostres drets. Acabo amb tres frases que se li atribueixen: “Hi ha dues maneres de mirar la vida: creure que els miracles no existeixen o creure que tot és un miracle”, “El meu ideal polític és la democràcia. Que es respecti tothom com a individu i cap persona sigui idolatrada”, i “La paraula progrés no té cap sentit mentre hi hagi nens infeliços”.

Per cert, avui acabo amb una imatge (geomètrica, també), en comptes d’una cita: