Entrades amb l'etiqueta ‘fotons’

On és, la informació?

dissabte, 16/12/2017

Els informàtics som cuiners d’informació. La guardem i la processem. La treballem, la preparem i intentem fer-la més digerible. A mi personalment, m’agrada treballar la informació geomètrica que permet modelitzar i representar la forma de tot el que ens envolta, però hi ha companys que són especialistes en camps tant diversos com el de la informació relativa al color i aparença dels objectes, l’anàlisi de dades, l’estudi d’informació textual, la interpretació d’imatges, el tractament de dades de sensors, la interpretació de la informació que donen els escàners mèdics, l’anàlisi de tot el que hi ha a internet, i molts d’altres. La informació es pot obtenir, emmagatzemar, enviar, compactar, des-compactar, filtrar, comparar, transformar, sintetitzar, i fins i tot crear.

Però, com es guarda? Us heu preguntat alguna vegada com és que les targetes externes de memòria dels nostres telèfons, com la de la imatge, poden guardar fotos, vídeos i documents? On són, les fotos? Ens hem acostumat a aquest estrany món màgic en el que podem veure noticies de tot el món pràcticament en temps real ben asseguts al sofà de casa i en el que podem parlar i veure les persones que estimem mentre caminem pel carrer i mirem la pantalla del mòbil, i ja res ens sorprèn. Però, ben mirat, no deixa de ser meravellós. Hem après a fer uns petits objectes, prims i petits com una ungla, minerals i inerts com les pedres, però que, amb la seva sofisticada estructura interna, poden guardar milers de fotos i vídeos. Són plaques minerals que amaguen un immens volum d’informació. La targeta que veieu a la imatge, de 32 GB, té espai per uns 64.000 llibres com el que ara mateix estic llegint.

L’Emilio Lledó ens parla d’aquest invent màgic que va ser l’escriptura. Ens diu que l’escriptura va ser el primer artifici per subjectar el riu del temps, permetent que el “després” no es dissolgués per sempre i que les paraules pronunciades no s’esgotessin en l’oralitat. Només l’escriptura va poder allargar la vida de la memòria, consolidant una cultura que abans, únicament amb la tradició oral, era immensament fràgil. Perquè quan parlem, estem comunicant informacions a travès de vibracions de l’aire, vibracions efímeres que es perden per sempre més si ningú, en aquell lloc i moment, les escolta. En canvi, l’escriptura aconsegueix el miracle de permetre la comunicació entre dos instants diferents de temps, amb marques a tauletes d’argila o marques de tinta a pergamins que perduren anys i anys. Per això, l’Emilio Lledó diu que el llibre és, abans que res, un recipient on reposa el temps, una presència que, paradoxalment, és carregada d’absències de manera que la lectura conjuga dues temporalitats, la de qui el va escriure i la de qui el llegeix. Jo només afegiria un detall: els llibres són recipients on reposa el temps, però també són regals d’informació. Fins el descobriment de la fotografia i el cine, els llibres van ser pràcticament els únics recipients (o contenidors) d’informació que va tenir la humanitat.

La informació és allò que ens permet conèixer, entendre, tenir arguments, decidir amb coneixement de causa. Però no existeix per sí sola. Li cal un substrat, basat en la matèria o en l’energia. I si no el té, desapareix. La matèria ens serveix per guardar-la, l’energia per enviar-la. Les lletres de tinta a les pàgines dels llibres codifiquen la informació del text en base a unes determinades pautes de forma i ordre. Quan llegim, aquest ordre material ens arriba a la retina gràcies a l’energia d’aquests fotons efímers que surten de la pàgina i que justament existeixen gràcies a uns altres fotons, els de la làmpada de casa. Tot és ben subtil. No podem llegir sense fotons, i els fotons, sense ulls que mirin, es perden junt amb la seva informació. Però la conjunció de pàgines escrites, fotons i mirada fa que la informació arribi al nostre cervell i que quedi emmagatzemada a les connexions entre neurones. És la informació dels llibres, cartells, imatges i vídeos, que ens arriba gràcies a la llum i que acaba guardant-se en petites modificacions de la matèria que conforma el nostre cervell.

Guardem informació visual, auditiva i en general sensorial al cervell, i el nostre cos guarda, a la seqüència de nucleòtids de l’ADN, tota la informació genètica que permetria fins i tot clonar-nos. Creem informació amb tots els correus electrònics i missatges que enviem, informació que al menys durant un temps ens queda guardada als nostres mòbils i portàtils. El vent que s’emporta les espores i llavors, ajuda a disseminar informació de les plantes, a la vegada que informa les abelles de les flors que requereixen pol·linització. Fins i tot rebem informació dels estels, codificada en l’espectre dels fotons de la seva llum. Perquè la informació no és cosa nostra. Fa milions d’anys que va repetint aquest cicle de la informació inherent a la matèria, que s’envia, es rep, es torna a guardar segurament una mica modificada, i així successivament.

Quan veig una targeta Micro-SD com la de la imatge no deixo d’admirar-me. Penso en els primers ordinadors de memòria de nuclis de ferrita, amb els que vaig tenir el privilegi de poder treballar. A la imatge de sota teniu una foto d’un tros d’una d’aquestes memòries, amb 2.500 nuclis. Compareu la mida (el meu dit pot servir de referència) amb la de la targeta de la imatge de dalt, on hi caben 32 mil milions de Bytes. En canvi, com que cada nucli podia guardar un bit, el tros de memòria de la foto podia emmagatzemar uns 312 Bytes. En aquesta web podeu veure el seu funcionament.

Però les memòries de ferrita van desaparèixer amb l’aparició dels circuits integrats i la miniaturització. Vam passar pels grans discs durs, pels disquets, pels CD i pels DVD. Els CD són com camps llaurats, amb solcs que marquen els bits individuals d’informació. Ho podeu veure, per exemple, a les imatges d’aquesta web. I, tornant al principi, on és la informació que guardem en un llapis de memòria o en una targeta Micro-SD? Les memòries flash no tenen nuclis de ferrita ni solcs, sino pous. La targeta de la imatge conté un total de 256 mil milions de pous microscòpics de potencial, ben aïllats, cada un dels quals pot atrapar i guardar electrons sense deixar-los sortir. La informació es guarda en pous plens i pous buits, que codifiquen els bits de tot allò que hi posem. Podem deixar la targeta en un calaix i al cap d’uns anys connectar-la via USB a l’ordinador. Comprovarem que la informació és allà, ben guardada. A les targetes flash no hi ha lletres ni píxels; només pous d’electrons.

La informació és etèria, però sabem que necessita una base material on reposar. És la gran paradoxa, que fa que sigui limitada, en temps, en espai i en volum. Pot durar centenars de milions d’anys, en trossos d’ADN que trobem en restes fossilitzades d’antics animals i plantes. O pot ser efímera, quan per error esborrem allò que acabem d’escriure. Aquest límit temporal és dramàtic. Hem perdut la majoria de manuscrits de l’antiguitat i ens hem de conformar amb el poc que ens està arribant. El temps és inexorable, i acabarà escombrant, moltes vegades de manera aleatòria, gran part del que ara ens sembla important. I també és evident que la immensa majoria de les fotos que es fan els joves d’avui en dia no arribaran pas als seus néts. Però a més és limitada en espai perquè és molt rar que no romangui a la Terra. I ho és en quantitat i volum perquè necessita un determinat substrat material que la emmagatzemi. Per tant, el nombre màxim de bits d’informació té un límit, que és de l’ordre del nombre d’àtoms (o partícules) a l’Univers, i que a la seva vegada és de l’ordre de 10 elevat a la potència 82. Un 1 seguit de 82 zeros. És un valor absolutament gegantí, però és un límit. La informació, a cavall entre la matèria i l’energia, és allò tan estrany, eteri i limitat que ens regalen els llibres quan els llegim a l’ombra d’un arbre.
———

Per cert, Vicenç Villatoro cita un acudit dels temps de Franco, que deia: “En España no se persigue a nadie por sus ideas, siempre que se mantengan en su espacio natural, que es el cerebro”.

Els colors invisibles

dijous, 28/04/2016

Som animals visuals. La immensa majoria de la informació que percebem és visual. Els ulls ens expliquen el món, ens llegeixen llibres i ens mostren fotos i pel·lícules. Els humans percebem el color gràcies a unes cèl·lules de la retina anomenades cons. De fet, tenim tres tipus de cons que detecten zones diferents de l’espectre. Uns tenen màxima sensibilitat en la zona dels vermells, uns altres en la dels verds i uns darrers en la zona dels blaus. En el seu funcionament, la nostra retina no és massa diferent dels sensors de les càmeres de fotos digitals, que també capten per separat el vermell, el verd i el blau. Només que en lloc de megapíxels, tenim megacons: uns sis milions i mig de cons a cada retina. Això sí, complementats amb prop de 120 milions de bastons que només poden captar informació en blanc i negre i tons de gris. En d’altres paraules, la nostra percepció visual és bàsicament no cromàtica, com podem observar al capvespre: quan es fa fosc, hi ha un moment en què perdem els colors i només hi veiem en blanc, gris i negre.

El nostre sistema perceptiu ha anat evolucionant durant milions d’anys i ha acabat en un sistema que filtra i processa senyals de cons i bastons. El cervell ho integra tot, però tots els nostres records visuals es basen en el que han captat els bastons i els cons dels tres canals vermell, verd i blau. Un sistema que ens és òptim i suficient per sobreviure.

La física ens diu que el color és una propietat de la llum, que la llum són fotons, que hi ha fotons de moltíssimes longituds d’ona, i que cada color és una determinada barreja de fotons de diferents zones de l’espectre visible. Fixeu-vos en aquesta imatge, que podeu trobar també en aquesta pàgina web. Mostra quatre diagrames de potència espectral, corresponents a la llum solar, a la d’una bombeta de LEDs, a una bombeta típica d’incandescència i a un fluorescent. Bàsicament ens diu quina és la barreja que hem de fer de fotons de diferents longituds d’ona (fotons que corresponen als colors purs de l’arc de sant Martí) per obtenir el color de cada una d’aquestes llums. Veiem que la llum solar és una barreja bastant uniforme de fotons de tot tipus, mentre que la de les bombetes incandescents, més groga, és una barreja amb pocs fotons de la zona dels blaus i molts més de la zona dels grocs, taronges i vermells. Altrament, la llum dels fluorescents és poc (massa poc) diversa.

Imagineu que els nostres ulls tinguessin uns “super-cons” capaços de detectar la barreja exacta de fotons que arriba a cada un dels punts de la retina. Veuríem els colors amb tota la seva plenitud, perquè cada super-con estaria enviant al cervell la corba espectral de la llum que li arriba. En una habitació il·luminada amb un fluorescent, quan obríssim la finestra i entrés la llum del sol, podríem distingir la barreja harmònica de fotons a les zones banyades per la llum del Sol de la pobresa cromàtica dels objectes que només reben la llum artificial. Si sortíssim al camp, sabríem veure quins arbres tenen problemes i envelliran més ràpid, perquè el color verd dels arbres sans té un diagrama de potència espectral diferent al dels malalts. Però nosaltres només tenim sensors retinals en tres canals cromàtics; simplement veiem els arbres verds perquè no podem distingir totes les possibles barreges de fotons. De fet, hi ha una paraula per aquest fenomen: els colors diferents però que el nostre ull no pot distingir s’anomenen metàmers.

Els nostres ulls no tenen super-cons perquè és un luxe que l’evolució no ens ha permès. Però en podem fabricar. Hem aprés a fabricar ulls artificials que veuen i poden distingir els colors que ens són invisibles. Són els espectròmetres d’imatge o càmeres hiper-espectrals. Un dels més sofisticats, l’Airbone del projecte AVIRIS, capta fotons en 224 canals distribuïts al llarg de tot l’espectre. En lloc d’una simple imatge en color, l’espectròmetre d’imatge del projecte AVIRIS genera un volum de color, com podem veure en aquesta web, amb 224 valors a cada píxel que ens diuen com hauríem de barrejar fotons de cada una d’aquestes 224 regions de l’arc de sant Martí (incloent infraroig i ultraviolat) per tal de reconstruir de manera molt precisa l’estructura de la llum que ha captat aquest píxel. El volum de color de les càmeres hiper-espectrals és a l’espai (x,y,L), on (x,y) son les típiques coordenades 2D de les imatges digitals i L (lambda) és la longitud d’ona dels fotons.

L’interessant de tot plegat és que aquests colors invisibles que capten els espectròmetres d’imatge ens diuen la composició química del que veiem a cada píxel de la imatge, perquè cada compost químic té un patró diferent d’absorció de fotons. L’observatori orbital del carboni, OCO-2, que dona voltes a la Terra des de fa més d’un any, ha pogut fotografiar les plomes o columnes de diòxid de carboni que pugen cap al cel als llocs on es cremen boscos (est del Brasil, sud de l’Àfrica, nord d’Austràlia) i que són invisibles als nostres ulls i a les càmeres digitals. Aviat podrem detectar les columnes inverses a les regions que absorbeixen i capturen diòxid de carboni, perquè aquests espectròmetres d’imatge detecten concentracions de CO2 de només una molècula per milió. La imatge de dalt és del vídeo de la selva humida de l’Amazones a Perú que podeu veure a aquesta pàgina web, obtingut a partir de les imatges captades per un espectròmetre d’imatge a bord d’un avió. Els arbres sans es poden distingir perfectament dels que demanen més aigua. Greg Asner, autor de l’article, diu que aquestes tècniques són com una mena d’anàlisi de sang dels boscos i de la salut del planeta. L’altre autor, Painter, explica que durant la propera dècada, amb nous satèl·lits equipats amb espectròmetres d’imatge, podrem identificar arbres individuals des de l’espai i saber la seva espècie i el seu grau d’estrès hídric. Seran sistemes de diagnosi del planeta, locals i precisos. Asner i Pinter acaben dient que nosaltres i la nostra tecnologia som la única esperança que tenim per guarir tot el que hem causat. Esperem-ho…

———

Per cert, i ves per on, L’Aràbia Saudita vol acabar amb la seva «addicció» al petroli. El seu projecte inclou mesures per diversificar l’economia en els propers 14 anys amb la finalitat de poder sortir-se’n a curt termini sense petroli.

El real, el que veiem i el que recordem

dijous, 30/04/2015

És primavera. Tot és un esclat de colors. Però, què són els colors?

Un biòleg segurament us dirà que els colors són les reaccions del nostre cervell als estímuls captats pels cons de la retina. Un físic dirà que els colors són la nostra interpretació subjectiva de determinades barreges de fotons de diferents freqüències. Encara que no ho sembli, les dues interpretacions són força semblants perquè qui estimula els cons de la retina són els fotons. Però, què són els fotons? Existeixen, els fotons? Què en sabem? Són reals?

El problema de la física quàntica és que no és gens intuïtiva. Pels voltants de 1870, poca gent pensava que la matèria fos discreta i ningú defensava que l’energia ho fos. Max Planck (l’any 1900) i Einstein, al 1905, van descobrir que els experiments que s’havien fet sobre l’energia que irradiaven els forns només es podia explicar si la llum estava formada per petitíssims elements indivisibles. I al 1920, els físics havien ja entès i comprovat que la matèria són àtoms i partícules i que l’energia radiant és una munió de fotons. Ara sabem que tot el petit és discret, a l’Univers.

Poc després, l’any 1927, Heisenberg, Bohr, Born i altres van plantejar que el món de les partícules i dels fotons és un món que mai coneixerem del tot. És la coneguda interpretació de Copenhaguen, una interpretació revolucionària de la mecànica quàntica. Durant les seves reunions a Copenhaguen, Heisenberg, Bohr i Born es feien preguntes semblants a les que també ens fem nosaltres: Les partícules subatòmiques, existeixen amb independència de les nostres observacions? Podem arribar a entendre bé el seu comportament? La interpretació de Copenhaguen diu que el món físic té justament aquelles propietats que veiem a partir dels experiments que fem, i que les teories només poden treballar amb els resultats d’aquests experiments però mai amb cap hipotètica realitat subjacent que pugui trobar-se amagada sota les aparences que observem. Qualsevol intent d’anar més lluny i de voler especificar amb més precisió els detalls de les partícules, inevitablement només trobarà aleatorietat i indeterminació. En poques paraules: mai podrem arribar a saber què és la realitat.

En Jim Baggott també es pregunta, en aquest llibre, què és real. Diu que vivim de representacions mentals, que construïm a partir del que entra pels nostres sentits. Seguint la interpretació de Copenhaguen, en Jim Baggott té clar que la realitat objectiva, si és que es pot parlar en aquests termes, ens serà sempre desconeguda. I també parla de les sorpreses que ens ofereixen els experiments en física de partícules, en el nostre afany per entendre alguna cosa del que és la realitat. Una d’elles és el descobriment que les partícules elementals com els fotons i els electrons es poden aparellar. Quan dues partícules formen una parella (en alguns casos poden ser fins i tot trios o grups de més partícules), els físics diuen que han quedat entrellaçades. El divertit de tot plegat és que, en el món de les partícules subatòmiques, no hi ha divorci. Quan dues partícules han quedat entrellaçades, no hi ha pas enrere. Qualsevol d’elles sap instantàniament el que li ha passat a l’altra. En paraules més precises, la mesura de l’estat quàntic d’una propietat d’una de les partícules fa que aquesta partícula quedi congelada en un estat determinat, amb la qual cosa podem saber immediatament l’estat de l’altra partícula entrellaçada, per molt allunyada que aquesta estigui de la primera. És la telepatia de les partícules entrellaçades. Ho sabem perquè ho hem experimentat, però no ho entenem perquè la realitat de les partícules se’ns escapa. Estem acostumats al coneixement del món macroscòpic, que té un comportament local: si vull fer un petó a algú, ens hem de trobar al mateix lloc i en el mateix moment. En canvi, la mecànica quàntica és no local i les propietats de les partícules i dels fotons entrellaçats estan connectades encara que es trobin a milions d’anys llum de distància. Un dels experiments que comenta en Jim Baggott és el que es va fer amb fotons entrellaçats que es mesuraven independentment en dues estacions d’observació a Bellevue i Bernex (Suissa), a onze quilòmetres de distància l’una de l’altra. Tota mesura d’un fotó a Bellevue condicionava immediatament la mesura de la seva parella (fotó entrellaçat) a l’altra estació de Bernex, i viceversa. És la telepatia de les partícules, que no entenem però que hem d’acceptar. És el que segurament permetrà en el futur la transmissió absolutament segura d’informació xifrada amb les tècniques de criptografia quàntica: generarem parelles de partícules entrellaçades, i de cada parella ens en quedarem una i enviarem l’altra a la persona que volem que rebi el nostre missatge. En el moment que nosaltres mesurem l’estat quàntic d’una propietat d’una de les partícules que ens hem quedat, sabem amb absoluta seguretat el que llegirà, de la partícula entrellaçada, el receptor del missatge, i així podrem generar claus de xifrat que ningú podrà conèixer llevat de nosaltres dos.

La realitat és fugissera i mai la podrem conèixer, com bé ens expliquen Bohn, Heisenberg i Born. El real no és al nostre abast, com també ens deia Plató. Mirem, escoltem, toquem, experimentem, i acabem construint representacions mentals del món i dels altres que conformen la nostra realitat. En Joan Margarit ja ens ho diu, quan parla que els nostres llocs acaben només existint dins nostre, en els records. Tot canvia, i passats uns anys, aquells llocs mítics de la nostra infantesa i joventut segurament hauran desaparegut. Però sempre ens quedaran les representacions mentals que vam construir, els records. Realment ens cal conèixer les realitats objectives, quan sabem que podem gaudir del nostre riquíssim món mental?

Per cert, en Josep Ramoneda diu que la gent es pregunta on és la radicalitat, si és en la capitalització del malestar i de les protestes o en les polítiques que deixen la meitat de la població juvenil sense feina i que generen fractures de desigualtat desconegudes fins ara

Ulls que veuen l’invisible: Gaia

dimecres, 3/07/2013

ViaLactea.jpg Des que Galileu va usar el telescopi per descobrir els cràters de la lluna, els quatre satèl·lits més importants de Júpiter i molts altres fenòmens, hem anat construint ginys més i més sofisticats per mirar el cel i poder captar el que els nostres ulls no poden percebre: estrelles i galàxies que mai ningú abans havia vist. Si podeu jeure al terra, al camp o a la muntanya, en una nit sense lluna i lluny de la contaminació lumínica, tindreu una bona percepció del que és l’Univers. L’espai us atrau, i tal vegada tingueu la sensació que podeu arribar a “caure” cap a l’infinit. Els ulls s’adapten a la foscor, i acabareu veient moltíssimes estrelles. Bé, de fet us pot semblar que són moltíssimes, però tampoc són tantes. Podreu veure de l’ordre de mil cinc-centes estrelles (en veuríeu unes 3000 si anéssiu també a l’hemisferi sud a veure l’altra part del cel). Per tal de veure’n més, ens cal un telescopi. Els telescopis són ulls artificials per a veure l’invisible, el que és més enllà de la nostra percepció.

Segons noticies de fa pocs dies, els tècnics de Toulouse ja han acabat el muntatge del satèl·lit Gaia, de l’agència espacial europea (ESA). Ara el portaran a la Guaiana Francesa, on una nau Soyuz el propulsarà a la tardor cap la seva òrbita.

Durant cinc anys, Gaia anirà fent observacions per tal de crear un mapa de mil milions d’estrelles de la Via Làctia. De fet, Gaia no serà un satèl·lit sinó un planeta artificial, perquè girarà al voltant del Sol tot mantenint-se en el punt Lagrangià L2, un punt de la recta Sol-Terra a 1,5 milions de quilòmetres de la Terra en direcció contrària al Sol. L2 és un punt estable a l’ombra de la terra. Gaia no patirà canvis de temperatura i necessitarà molt poca energia per estabilitzar el seu moviment i rotació, ja que, de manera natural, anirà descrivint una corba de Lissajous al voltant de L2, com si anés passejant per una gran vall enmig de l’espai i del no res. Gaia és hereu del telescopi Hubble. Però com que tot evoluciona, podrà aconseguir imatges d’una resolució molt més gran (el nombre de sensors fotogràfics CCD de Gaia és de 106, front als dos sensors de Hubble), tot arribant als 938 megapíxels.

Gaia és un veritable prodigi de la ciència i la tecnologia. La seva càmera digital té una resolució de 24 microsegons d’arc, gràcies al seu sistema òptic i gràcies a que els píxels dels seus sensors CCD són de 23 x 13 mil·lèsimes de mil·límetre (micres). En d’altres paraules, amb la càmera fotogràfica digital de Gaia podríem fotografiar un pòster des de 1000 quilòmetres de distància i veure-hi fins i tot un cabell humà que hagués caigut damunt el paper (vegeu nota al final). No està malament, oi? Si no fos per les distorsions i absorcions atmosfèriques, podríem fer una foto des del cim de l’Aneto i reconèixer un cabell en un full de paper a Lisboa. A més, per tal de mesurar distàncies a les estrelles, Gaia ens proporcionarà imatges capturades amb “els seus dos ulls”, ulls que sabem posicionar en llocs molt separats per tal de reduir els errors de triangulació en el càlcul de les distàncies. El truc és comparar imatges de la mateixa regió del cel cada mig any, quan Gaia es trobarà en punts oposats de la seva trajectòria al voltant del Sol. Amb aquest mètode, tindrem fotos capturades per dos “ulls” que estaran separats 302 milions de quilòmetres i podrem mesurar les distàncies a les estrelles més properes amb una precisió inèdita, del 0,001%. Però no tot serà tan senzill. La nostra galàxia és tan gran que l’error quan calculem les distàncies a estrelles que són prop del seu centre pujarà inevitablement fins a un 20%.

La càmera fotogràfica digital de Gaia té sensors CCD, com les nostres càmeres digitals i telèfons mòbils. El sensor CCD és el substitut digital de les antigues pel·lícules fotogràfiques. És un conjunt d’elements de detecció de fotons organitzats en forma de matriu de punts de manera que puguin mesurar la quantitat de llum arribada a cadascun d’aquests punts o píxels. Els sensors CCD (les sigles CCD venen de “charge coupled device” en anglès) són un clar exemple del resultat de connectar i sumar ciència i tecnologia. La comprensió de l’efecte fotoelèctric, que com sabem va conduir al premi Nobel que Einstein va rebre l’any 1905, va ser aprofitat per Willard Boyle i George Smith, dels Laboratoris Bell, que van inventar els primers dispositius CCD l’any 1969. Willard Boyle i George Smith van rebre el premi Nobel de fisica l’any 2009, justament per l’invent dels CCD. Dos premis Nobel de física, separats més d’un segle.

L’esquema de sota, que podeu trobar a la pàgina web de Hamamatsu, explica molt clarament el funcionament dels CCD. Cada element del CCD és un detector de fotons i correspon a un dels píxels de la imatge que captarem. El CCD d’una càmera digital amb una resolució de 6 megapíxels té 6 milions d’elements sensors, disposats segons una matriu regular en files i columnes. A la imatge de l’esquema de sota, aquests elements es representen com petites galledes. Quan fem la foto i obrim l’obturador, els fotons de llum omplen més o menys cada una de les galledes. És com si plogués; en aquest cas, els gotes d’aigua representarien els fotons. En les galledes dels píxels més clars de la imatge hi plou més que en les galledes que corresponen a píxels de les zones més fosques. Però els fotons són energia, i el principi de l’efecte fotoelèctric ens diu que quan interactuen amb la matèria, desapareixen tot transferint la seva energia als electrons dels àtoms del sensor CCD. Les galledes dels píxels dels CCD no guarden aigua de la pluja perquè els fotons, a diferència de les gotes d’aigua, no es poden parar. La metamorfosi dels fotons (els fotons segueixen Kafka, avui que Google ens recorda que és el 130è aniversari del seu naixement) fa que mentre plouen fotons, les galledes recullen els electrons amb més energia que els fotons han alliberat. Finalment, quan es tanca l’obturador i ja no arriben més fotons, cal “llegir” la imatge tot apuntant-nos la quantitat d’electrons lliures que hem recollit en cada galleda per tal de saber la intensitat lumínica en cada píxel i així poder construir la imatge digital. Això és el que veiem al centre i a la part de baix de l’esquema. El procés de lectura és seqüencial, amb un mecanisme que es pot explicar molt bé amb cintes transportadores. Les cintes es mouen i vessen el contingut de totes les galledes de la primera fila en una cinta amb galledes auxiliars. Tot seguit, aquesta cinta auxiliar va vessant les seves galledes en el contenidor calibrat de mesura que veieu a sota de l’esquema. Aquest contenidor pot mesurar el contingut de les galledes una rere l’altra, abans de buidar-se i repetir tot el procés amb la següent fila de galledes del mig de l’esquema. És clar que en realitat, els moviments de les cintes són desplaçaments de registres que contenen les informacions dels píxels o galledes.

CCD_LlegirPixels.jpg

 

Nota: Una resolució de 24 microsegons d’arc entre dos píxels veïns, és increïblement elevada. Si dividim 24 microsegons (o sigui, 24 per 10 elevat a la -6 segons) per 3600 tindrem la resolució en graus, i si després la dividim per 180 i la multipliquem pel nombre pi, la tindrem en radians. Si feu el càlcul, veureu que la resolució entre dos píxels veïns dels CCD de Gaia és de 1,16 per 10 elevat a la -10 radians: 0,000000000116 radians. Utilitzant l’equació geomètrica que ens diu que l’arc és igual a l’angle pel radi quan l’angle es mesura en radians, podem veure que quan enfoquem el telescopi de Gaia a una determinada distància D, podem captar objectes d’un gruix igual al resultat de córrer la coma 10 posicions en el valor de D. Per això, amb Gaia podríem fer una foto des del cim de l’Aneto i reconèixer un cabell en un full de paper a Lisboa.

Per què hem de canviar les bombetes?

dijous, 11/10/2012

Bombetes1.jpg Hem de canviar les bombetes perquè es fonen, com tots sabem. Però també sabem que unes bombetes duren més que les altres. Les que més duren solen ser més eficients, com veurem tot seguit. Cóm podem fer que durin més, les bombetes? És aquí on entra la ciència. Des de fa un segle, cada cop entenem millor com interactuen la matèria i la llum. Els descobriments de la física ens permetran, d’aquí a no massa temps, que quasi no calgui canviar les bombetes. Les làmpades dels propers anys tindran una durada de trenta, quaranta o cinquanta anys.

Aquest any, el Premi Nobel de física ha estat atorgat a Serge Haroche i David J. Wineland, justament per la seva recerca sobre la manera com interactuen la matèria i la llum, l’energia electromagnètica. La seva recerca en el camp dels estats quàntics ens proporciona noves eines per avançar en el camí de la computació quàntica (val a dir que sóc dels informàtics que creuen que això va per llarg, i que els ordinadors quàntics no seran pas més fàcils d’aconseguir que la fusió nuclear a nivell industrial, per exemple). Els mecanismes que governen la interacció entre els fotons de llum i els electrons dels àtoms són complexes. Ara sabem que els fotons poden transferir energia als electrons, i que l’energia dels electrons d’un corrent elèctric pot generar nous fotons. Però el que no és tan conegut és que Albert Einstein va rebre el premi Nobel l’any 1921 no pas per la teoria de la relativitat, sinó per la seva formulació de l’efecte fotoelèctric. A l’article que va publicar l’any 1905, Einstein donava una explicació quàntica de la interacció fotons-electrons, i explicava que l’energia dels fotons és funció de la seva freqüència, del seu color. Els fotons de freqüència massa baixa no tenen prou energia i no generen electricitat en no poder fer saltar els electrons.

Totes les bombetes són fàbriques de fotons. Generen fotons a partir de l’energia del corrent elèctric. Les bombetes clàssiques, incandescents, es basen el l’efecte Joule: els cables elèctrics s’escalfen. És el mateix principi que fa que funcionin molts calefactors i estufes elèctriques, però a una temperatura molt més elevada, que fa que el filament esdevingui incandescent. Aquestes bombetes fan llum, però també generen molta radiació infraroja, molta calor. I a la factura elèctrica acabem pagant més la calor que no volem que la llum que necessitem. En canvi, les bombetes de LED són molt més “fredes”. Tot va començar l’any 1927 quan Oleg Lósev va publicar, a la revista de telefonia de Rússia, els detalls dels seus experiments. Lósev va descriure el fenomen de l’electroluminescència, que va descobrir quan va veure que els díodes emetien fotons. Els díodes són vàlvules d’electricitat: la deixen passar en un sentit, però no en sentit invers. És com un riu en un saltant d’aigua. L’aigua ve per la part de dalt, cau i continua a baix, pel riu; però no pot fer-ho a l’inrevés, no hi cap riu que pugi pels saltants d’aigua. En un díode, els electrons cauen pel saltant però només poden moure’s en un sentit perquè no el poden tornar a pujar. El que passa és que, en “caure”, els electrons desprenen energia, com l’aigua en els saltants d’una central hidroelèctrica. I aquí és on apareix la teoria quàntica i els treballs d’Einstein de l’any 1905. L’energia que tenen i que poden desprendre els electrons està empaquetada en petits “farcellets”. Cada farcellet és un quant d’energia. Si el saltant és petit (i això depèn dels materials del díode) l’electró cau però no genera cap fotó perquè no pot desembolicar farcellets. Si és més gran, pot generar un fotó de baixa energia (radiació infraroja). Si encara és més alt, el díode por arribar a fabricar fotons de llum de color visible pels humans. Trobar nous materials no va ser fàcil. La recerca sobre els LED i l’emissió de fotons va haver d’avançar molt i de fet no es va poder aprofitar tècnicament fins als descobriments de Bob Biard i Gary Pittman l’any 1961 i de Nick Holonyak l’any 1962 (que va aconseguir generar llum visible). Finalment, va ser la revista Nature Photonics, l’any 2007 i amb un article de Nikolay Zheludev, qui va reconèixer Oleg Lósev com inventor dels LED.

Parlem ara de la durada i de l’eficiència de les bombetes. A la imatge del començament d’aquest article, d’esquerra a dreta i de dalt a baix, podeu veure la clàssica bombeta incandescent, una bombeta halògena, una fluorescent de baix consum i una bombeta de LED. Segons un recent article de la revista Scientific American, una bombeta incandescent de 100 watts produeix una intensitat lumínica de 1600 lumens. Per aconseguir la mateixa llum, una bombeta halògena consumeix 77 watts mentre que una fluorescent de baix consum en consumeix 23, de watts. Les bombetes de LED donen aquesta llum tot consumint 20 watts. Però les dades sobre les seves durades són aclaparadores. Les bombetes incandescents duren unes 750 hores, les halògenes unes 1000 hores, les fluorescents unes 10000 hores i les LED duren entre 25000 i 30000 hores. Val a dir que això té a veure amb les actuals polítiques comercials i amb l’anomenada obsolescència programada. La prova és que hi ha bombetes incandescents que han estat enceses permanentment els últims 110 anys sense fondre’s.

Les làmpades LED són el futur. Són molt més eficients, gasten poc, generen molt poc calor i radiació infraroja, i duren molt més. El seu problema actual és encara el preu, però és clar que la tendència és a la baixa i que els propers anys seran més econòmiques. En tot cas, si feu un petit càlcul i compteu el que us estalvieu en compra de bombetes i en el rebut elèctric, veureu que surt a compte…

Les làmpades LED són petites obres d’art que encapsulen la recerca de més d’un segle en el camp de la interacció entre llum i matèria, començant el 1905 amb la teoria quàntica de l’efecte fotoelèctric d’Einstein, continuant amb els dispositius d’Oleg Lósev de l’any 1927 i amb els díodes emissors en espectre visible de Nick Holonyak, i arribant als treballs actuals en fotònica, en el camp del color i de la millora de rendiment. No hem pas acabat. Els LED dels nostres fills seran millors, menys cars i més eficients que els que ara coneixem.