Entrades amb l'etiqueta ‘Lavoisier’

Les molècules del got d’aigua

dissabte, 29/09/2018

Fa poc vaig llegir l’article que Albert Einstein va escriure l’any 1905 sobre la teoria del moviment Brownià. Poder llegir aquest article que Einstein va publicar als Annals de Física, en versió facsímil, amb les paraules i formules originals que va escriure i revisar ell mateix, va ser un plaer només comparable al de contemplar una obra mestra de la pintura, escoltar Mozart o llegir poesia. He estat dies portant les 18 pàgines impreses de l’article tot el dia amb mi, per així poder assaborir-lo trosset a trosset. El podeu trobar aquí.

Einstein, a l’article, explica essencialment tres coses. En primer lloc, mostra que quan tirem una mica de solut (per exemple, sucre, unes gotes de colorant, o fins i tot pol·len o pols de farina) en un solvent (aigua, però també un gas com l’aire), el comportament del solut és el mateix en tots els cassos, de manera que és possible calcular la seva pressió directament a partir de la teoria cinètica del calor que Ludwig Boltzmann havia enunciat feia pocs anys. Després, troba una formula per a calcular el coeficient de difusió, que mesura la velocitat amb la que el solut s’anirà estenent pel solvent; i, a continuació, dedueix una senzilla expressió que permet calcular el desplaçament mitjà de les partícules de solut durant un cert temps en funció justament d’aquest coeficient de difusió (vegeu la nota al final). La idea és ben senzilla: el solut es va difonent en el solvent perquè les seves partícules o molècules no paren de moure’s en un moviment que anomenem Brownià (en record de Robert Brown), empeses per infinitat de molècules del solvent que xoquen amb elles de manera totalment aleatòria.

I justament, el més bonic de l’escrit d’Einstein és el desenllaç final. Un cop ha deduït les formules que regulen dos comportaments (difusió i desplaçament mitjà) de les partícules de solut, elimina la variable que mesura el coeficient de difusió i obté la formula que podeu veure, amb la grafia original de l’article de 1905, a dalt. Es tracta d’una equació com a mínim sorprenent (vegeu un cop més la nota al final) perquè relaciona una magnitud perfectament mesurable com és el desplaçament mitjà de les partícules de pol·len que suren en un got d’aigua durant el seu moviment Brownià, amb el nombre de molècules d’aigua que tinc al got.

Einstein va entendre que el moviment Brownià era una prova de l’estructura molecular de l’aigua (i d’altres líquids i gasos), però a més ens va explicar com calcular el nombre de molècules. Gràcies a Einstein, ara sabem que cada 18 grams d’aigua contenen 601.698 trilions de molècules, que a cada centímetre cúbic n’hi ha 33.428 trilions, que la massa de cada una d’elles és evidentment un gram dividit per 33.428 trilions, i que el nombre de molècules que tinc en el meu got d’un quart de litre d’aigua és igual a 8 quadrilions i 356.917 trilions. Tot, gràcies a poder mesurar l’efecte que tenen els xocs aleatoris de tota aquesta munió de molècules sobre alguns grans microscòpics de pol·len. Per primera vegada, algú ens havia donat eines per a mesurar el domini atòmic. I la troballa no va ser només la idea, sinó la precisió dels resultats.

Albert Einstein va tancar un capítol de la historia de l’estructura de la matèria amb una elegància indiscutible. Tot havia començat amb Antoine Lavoisier, que l’any 1789, cinc anys abans que el matessin, va escriure el primer llibre de química moderna després de descobrir l’oxigen i els mecanismes de la combustió. Havia continuat amb John Dalton, que, entre 1802 i 1808, va fer la hipòtesi que la matèria estava formada d’àtoms, que els àtoms es combinaven en relacions enteres simples, i que era possible deduir els pesos relatius dels àtoms de diferents elements. I amb Amedeo Avogadro, que l’any 1811, per a combinar els treballs de Dalton sobre l’estructura atòmica de la matèria amb la llei dels gasos de Joseph Louis Gay-Lussac, va fer la gran hipòtesi: que dos volums iguals de gasos diferents, tots dos a la mateixa temperatura i pressió, contenen el mateix nombre de molècules. Molt després, l’any 1874, el químic rus Dmitri Mendeléiev, basant-se en el mètode d’Stanislao Cannizzaro per determinar masses atòmiques de diferents gasos, va establir la llei dels gasos ideals, va poder repartir els elements químics coneguts a la taula periòdica que va proposar quasi en paral·lel amb Lothar Meyer, i va poder predir l’existència d’elements encara no descoberts. Però va ser Einstein qui ens va regalar l’eina per a quantificar-ho tot, explicant-nos com calcular la quantitat d’àtoms o molècules en un mol de qualsevol solvent (el que ara s’anomena nombre d’Avogadro). Per primera vegada, només mesurant els moviments del pol·len vam saber obrir les portes del món atòmic.

Tot plegat, és un exemple sublim d’on podem arribar (més ben dit, d’on poden arribar algunes persones) només pensant i deduint. Perquè la formula d’Einstein que teniu a dalt és el miracle que ens permet saber, mesurant simplement la velocitat de difusió d’un colorant o el moviment del pol·len damunt l’aigua, quantes molècules hi ha al nostre got d’aigua, i quin és el pes (de fet, la massa) de cada una d’elles. Albert Einstein ens va ensenyar que podem entendre allò que és però que no podem veure, si sabem fer bones deduccions a partir del que sí veiem i observem de manera fiable. Observar, pensar, entendre, deduir, descobrir, són els grans principis de la ciència. I després actuar, perquè la ciència és la mare de l’enginyeria. Tot plegat, tenint ben presents dos aspectes essencials. Primer: quan observem, hem d’evitar que ens enganyin i hem d’estudiar els fets amb total objectivitat (això és especialment rellevant, en aquest món de falses veritats). I el segon: quan actuem, no ens oblidem de l’ètica. Nulle dia sine etica.

———

Per cert, l’Amador Fernández-Savater reivindica la capacitat de pensar i actuar, per sortir de la posició espectadora que no canvia res. Diu que sense pensament no hi ha creació, i que sense creació quedem atrapats en alternatives infernals, diu que la lluita és un regal que ens permet aprendre, junt amb els altres.

———

NOTA: L’article d’Einstein de l’any 1905 sobre el moviment Brownià és un viatge pels mètodes moderns de la matemàtica i la física. Utilitza les variables d’estat que ara emprem en l’estudi dels sistemes dinàmics, la teoria cinètica del calor (o dels gasos) de Boltzmann, el concepte de molècula (amb una estimació aproximada del nombre d’Avogadro), la llei dels gasos perfectes, el concepte d’entropia, les lleis de la dinàmica de Newton, de la difusió i de la pressió osmòtica, la integració analítica per a poder quantificar comportaments macroscòpics, la hipòtesi d’independència entre diferents partícules, la interpretació del coeficient de difusió com la constant de proporcionalitat entre les derivades espacials i la temporal a l’equació en derivades parcials de la difusió…

En tot cas, les dues grans aportacions de l’article són la deducció de la formula de la difusió, i la del desplaçament de les partícules. A la primera, Einstein aconsegueix calcular el coeficient de difusió (per exemple, d’una gota de colorant vermell en un got d’aigua) només en funció de la temperatura, la viscositat de l’aigua i el radi de les molècules de colorant. A la segona, dona la formula per a calcular la mitjana quadràtica dels desplaçaments de les partícules (de pol·len, colorant o del que sigui) en una determinada direcció x, en funció del coeficient de difusió i del temps. La formula de dalt surt d’eliminar la variable que mesura el coeficient de difusió que surt a aquestes dues equacions. Permet calcular N (el nombre de molècules que conté un mol de qualsevol substància química) com la inversa de la mitjana quadràtica dels desplaçaments de les partícules (cal observar que Einstein representava el nombre 1 per la lletra “I”), multiplicada per R*T (R es la constant dels gasos i T és la temperatura absoluta en graus Kelvin, vegeu a sota) i dividida pel producte de 3 pi per k i per P (on k és la viscositat del solvent i P és el radi de les partícules o molècules del solut. Per cert, és interessant que la formula contingui el nombre pi, oi? La importància del que és rodó també la trobem al món atòmic…

Aquesta formula de Einstein va permetre, només 4 anys després, que el físic francès Jean Perrin determinés el valor del nombre d’Avogadro N a partir de mesures experimentals del moviment Brownià. Perrin va deduir que el valor de N era 6,7 per 10 elevat a la potència 23. Després, aquest nombre N de molècules que conté un mol de qualsevol substància química s’ha acabat fixant en 6,022 per 10 a la 23. Un mol d’aigua, per exemple, són 18,015 grams o centímetres cúbics d’aigua.

La llei dels gasos perfectes diu que el producte P.V (pressió per volum) és igual a n per R per T, on n és la quantitat de gas (en mols), R es la constant dels gasos, i T és la temperatura absoluta en graus Kelvin.

Aquesta pàgina inclou dues simulacions animades del moviment Brownià.

Una història de capsetes, fermions i preons

dijous, 15/11/2012

Llampec.jpg El descobriment de la matèria és una aventura tan apassionant com la nostra lenta comprensió de l’Univers o com els viatges dels exploradors renaixentistes. Les noves troballes no sempre són fàcils d’entendre, però estan canviant les nostres vides, com veurem. Tot plegat està relacionat amb una recent notícia sobre els quarks i els preons.

La matèria no és un conjunt amorf i gelatinós, com pensaven, fa no massa més de cent anys, científics com Wilhelm Ostwald o Ernst Mach. Tot el que veiem són aglomerats de petites partícules individuals: molècules i àtoms. Demòcrit ja ho va dir fa més de 2400 anys. Deia que tot està composat d’àtoms indivisibles. No li van fer cas durant 1900 anys. Va ser Pierre Gassendi, nascut el 1592, qui va recuperar l’atomisme junt amb Descartes. La física evolucionava ràpidament, amb científics com Galileo Galilei i Isaac Newton. Però en aquells temps, no enteníem l’estructura de la matèria. És un fet poc conegut, però el mateix Newton (1642-1727) va gastar bastants diners en la cerca alquímica de l’or. I Hennig Brandt, el darrer alquimista, va descobrir el fòsfor tot cercant l’or, l’any 1669. El cert és que, l’any 1670, només es coneixien 14 elements. Nou d’ells ja eren coneguts pels antics (or, plata, coure, ferro, estany, plom, mercuri, sofre i carboni) mentre que els altres cinc van ser descoberts pels alquimistes: zinc, arsènic, antimoni, bismut i fòsfor. Vam haver d’esperar fins els temps de la Revolució Francesa, amb el primer tractat modern de química (publicat per Antoine Lavoisier l’any 1789) i la teoria de John Dalton de l’any 1808, per poder tenir una teoria coherent sobre l’estructura de la matèria. Els estudis de Laviosier i Dalton es basaven en experiments i mesures precises, i deixaven de banda les especulacions alquimistes. La tècnica científica i renaixentista de Galileo Galilei, basada en experimentar i mesurar, havia finalment arribat a la química. Segons Dalton, qualsevol substància està formada per àtoms. En els elements purs (or, plata, ferro…) tots els àtoms són del mateix tipus. Els àtoms dels elements s’uneixen en proporcions enteres fixes i constants, per tal de formar compostos. Els compostos estan formats per molècules. Dalton, tot estudiant les combinacions i les proporcions, va saber calcular per primer cop els pesos atòmics dels elements. Després, l’any 1869, Dmitri Mendeleev va observar propietats repetitives dels elements i va proposar la taula periòdica. Va ser difícil i va costar molts segles, però aquests descobriments van portar al naixement de la química moderna. La síntesi de compostos, nous materials i medicaments n’és una conseqüència. Quan anem a la farmàcia, podem trobar remeis per als nostres mals gràcies al camí que gent com Gassendi, Lavoisier, Dalton o Mendeleev ens van preparar.

Demòcrit deia que els àtoms són indivisibles. Però, a finals del segle XIX, es va veure que no. Que eren com capsetes que podíem obrir, i mirar dins. Joseph John Thomson va identificar els electrons i, l’any 1897 va proposar el primer model estructural de l’àtom. Thomson deia que, atès que els àtoms són neutres i que els electrons tenen càrrega elèctrica negativa, l’àtom ha de contenir altres partícules amb càrrega positiva. El model d’àtom de Joseph John Thomson era de tipus “plum cake“: els electrons estaven incrustats com les panses al brioix. Ara sabem que això no és massa correcte. Però el cert és que, fa uns 130 anys, es va descobrir l’existència dels electrons. Gràcies a aquest descobriment vàrem acabar aprenent com domesticar-los, els electrons. El segle XX ha estat el segle del control dels electrons i de l’ús de l’electricitat. La primera central elèctrica d’Espanya (i tercera d’Europa) es va construir a Barcelona, al carrer de la Mata, l’any 1883. Fa cent anys, al 1912, a Barcelona pràcticament només estaven electrificats els tramvies. Però ara tenim electrodomèstics, televisió, internet, telèfons intel·ligents, cotxes elèctrics i molt més. Els electrons que vàrem trobar en obrir la capseta dels àtoms ens han canviat la vida.

Els àtoms no són plum cakes, però el que sí és clar és que són molt petits. La seva mida es mesura en angströms. Un angström (que indicarem amb la lletra “A”) és una deu mil milionèsima del metre. Un àtom d’hidrogen mesura 1.1 A, i una molècula d’aigua 2.8 A. En altres paraules, de banda a banda d’una banyera d’un metre podriem col·locar més de tres mil milions de molècules d’aigua, si les poguéssim posar en fila. L’any 1906, Ernest Rutherford i els seus col·laboradors Hans Geiger i Ernest Marsden van publicar la seva teoria sobre l’estructura del nucli atòmic. És la base del que coneixem avui. Els àtoms tenen un nucli i els electrons són al voltant seu en diversos nivells d’energia. En el model de Rutherford, l’àtom era com un sistema solar microscòpic on el nucli feia de sol. Rutherford ho va poder deduir a partir d’un simple experiment. Va bombardejar una làmina molt fina d’or amb partícules alfa, i va observar que quasi totes les particules la travessaven sense ni tan sols desviar-se. Algunes, en canvi, sortien molt desviades o fins i tot rebotaven i tornaven enrere. Eren les que xocaven amb els nuclis dels àtoms d’or, com en un billar nanoscòpic. Gràcies a Rutherford sabem que la mida del nucli és molt més petita que la de l’àtom: de fet, al llarg del diàmetre de l’àtom d’hidrogen podríem arrenglerar uns cent mil nuclis. Mentrestant Einstein, a l’any 1905, va explicar els nivells d’energia dels electrons i l’efecte fotoelèctric, conseqüència directa de la interacció entre fotons de llum i els electrons dels àtoms. Nosaltres ens aprofitem cada dia d’aquest principi quan passem pels sensors fotoelèctrics de les portes dels ascensors, i quan fem fotos amb el telèfon mòbil o amb la càmera digital. També, per exemple, utilitzem la radiació sincrotró dels electrons  en la teràpia mèdica i en molts altres camps.

Semblava que el nucli atòmic era indivisible, però va ser que no. Al segle XX vàrem trobar la clau per obrir la capseta del nucli atòmic. L’any 1932 James Chadwick es va adonar que la radiació que havien observat Walther Bothe, Jean Frédéric Joliot-Curie i altres, era produïda per una partícula que ell va anomenar neutró. Després vam saber que el nucli conté protons i neutrons. En els àtoms sense càrrega elèctrica, el nombre de protons equival al nombre d’electrons. Sabem que el nucli atòmic és esfèric o el·lipsoïdal, que el seu diàmetre és proporcional a l’arrel cúbica del total de nucleons que conté (protons i neutrons), i sabem que la mida d’un protó és tal que en un metre podríem arrenglerar 588 bilions de protons. Tot això ens ha permés entendre les reaccions nuclears i hem aprés a controlar-les. Hem après a construir reactors nuclears i estem fent recerca en el camp de la fusió nuclear. No és fàcil i tots sabem i hem anat veient els riscos, però alguns usos són indiscutibles. Qui no creu en la utilitat curativa de la radioteràpia?

Doncs bé, els protons i neutrons també són capsetes que finalment hem pogut obrir. No ha estat fàcil, perquè cal trencar-les. Hem hagut de construir obridors gegants: els acceleradors de partícules, com el LHC del CERN. Segons el Model Estàndard (desenvolupat a principis dels anys 70), els protons i neutrons són contenidors de fermions, i més en concret de quarks. Tots els experiments posteriors han anat confirmant aquesta teoria del Model Estàndard, i finalment fa pocs mesos s’ha pogut identificar la darrera de les partícules que preveu aquest model: el bosó de Higgs. El bosó de Higgs completa i tanca el mapa de les disset partícules “elementals” que postula la teoria quàntica de camps, junt amb les seves partícules germanes: els quarks, els electrons, els neutrins, els fotons, els gluons i d’altres. El Model Estàndard integra tres de les quatre forces que governen la física: les forces electromagnètiques i les dues forces nuclears, forta i dèbil. Ens explica perquè ens podem moure i vèncer la resistència de l’aire, però en canvi no podem travessar una paret. Alguns aparells actuals de diagnòstic mèdic, com els escàners PET, es basen en aquests descobriments i en l’emissió de positrons, antipartícules de tipus leptò. Però encara queden fenòmens físics per explicar. Per exemple, no sabem d’on surt la força de la gravetat (la quarta força de la física) i no sabem si existeixen partícules que l’expliquin, els hipotètics gravitons. De fet, el Model Estàndard és considerat en general una teoria provisional, que molt probablement serà superada i millorada al llarg del segle XXI.

Quina mida tenen els quarks? La resposta és que encara no la sabem, la mida dels quarks. Alguns físics creuen que la seva mida és nul·la, i que per tant són capsetes que ja no podrem obrir. Però d’altres, com Don Lincoln, creuen que poden tenir una mida de l’ordre de deu a la menys divuit metres (deu a la menys divuit és pot escriure com cero, coma, disset ceros i un 1). Podrem obrir la capseta dels fermions i dels quarks?  De fet, els físics ja han donat un nom al que podrien trobar si la poguessin obrir: són els preons. Però, existeixen els preons? Hi ha moltes teories, per exemple, la teoria de les super-cordes. Fins i tot hi ha qui diu que totes les partícules són plecs de l’espai-temps i que tot el que veiem (i nosaltres mateixos) som geometria. Haurem d’esperar, si volem saber-ho. Don Lincoln diu que podem tenir preons, però també pre-preons o fins i tot pre-pre-preons. Quantes capsetes haurem d’obrir fins arribar a la frontera quàntica? Podrem algun dia entendre i fins i tot domesticar una mica la força de la gravetat? Podria ser útil (per als nostres descendents), no creieu?

Cada cop costa més d’obrir les capsetes, i cada cop és més difícil d’explicar el que hi trobem. No són fàcils d’entendre, els reptes actuals de la física. Però, com hem vist, cada cop que obrim una capseta pugem un nou esglaó i aconseguim que la Natura treballi una mica més per a nosaltres. Gràcies a que hem anat obrint capsetes tenim medicaments, nous materials, telèfons, internet i aparells de diagnòstic i teràpia mèdica. És cert que també hem creat eines de mort i destrucció, i que encara hem de sortir de la prehistòria i aprendre a resoldre els conflictes amb el diàleg, com reconeix l’Eudald Carbonell. Però, com també diu el filòsof Javier Gomà (Babelia, 10-11-2012), hem de sentir-nos afortunats per viure a l’època actual perquè tothom, de qualsevol etapa històrica, escolliria l’actual per viure.

Diuen que no som res, i és cert. Som buits, som espai buit sotmès a les forces atòmiques. Per això, constantment estem sent travessats per neutrins que ens arriben de tot l’Univers. Si cada una de les molècules d’aigua del nostre cos i de la nostra sang tingués la mida del planeta terra, els tres nuclis dels àtoms d’hidrogen i oxigen tindrien la mida d’una illa de l’eixample de Barcelona, i els quarks i partícules elementals que els composen (unes poques dotzenes) serien més petits que pilotes de futbol. La resta és el buit, el no res.

La ciència del segle XXI no és com la del segle XIX. Ara sabem que, a banda de no ser res, no sabem res. La ciència torna a ser molt més prop de la filosofia. Sabem que les nostres teories son transitòries. El Model Estàndard de les partícules elementals serà probablement superat, aquest segle XXI. M’agrada pensar que no sabem si els quarks són capsetes, i quantes capsetes més haurem d’obrir. Anirem entenent més, però cada cop és probable que tinguem més preguntes sense resoldre. Però el que sí és clar és que, si ho sabem fer bé, les noves capsetes que obrim serviran per millorar la vida dels nostres néts. Obrim capsetes, continuem sabent poc, però les capsetes obertes donen eines per a viure millor!