Entrades amb l'etiqueta ‘teoremes’

Els grecs i l’abstracció

divendres, 11/01/2019

Tenim una paret, com la que conté els punts A i C de la imatge. I ara, volem construir una segona paret a partir del seu punt final A, de manera tal que aquest segon tram formi angle recte amb la paret original A-C.

Si el terreny és pla, podem determinar la direcció de la segona paret amb un mètode, poc conegut, que només requereix disposar d’una corda i quatre estaques: clavem una primera estaca a A, lliguem una segona estaca al final de la corda, la tibem, i clavem aquesta nova estaca en el punt B (tot mirant que la distància de B a la paret A-C sigui menor que la llargada de la corda). Desclavem A i, mantenint l’extrem de la corda a B, anem girant i marcant al terra el cercle vermell de la imatge. Tornem a deixar A al seu lloc inicial, i a més, clavem la tercera estaca C a la intersecció entre el cercle i la paret. Finalment, mirant el punt B des de C, posem la darrera estaca D en el punt del cercle que veiem alineat amb B i C. Amb aquest algorisme d’estaca i corda, podem garantir que la direció entre A i D forma angle recte amb la paret original. Només cal anar fent paret des de A en direcció cap a D.

El que acabem de veure és una recepta pràctica (un algorisme) per a resoldre el problema, molt habitual en el camp de la construcció, de fer cantonades en angle recte. Les receptes matemàtiques per a resoldre determinats problemes no són cap novetat, però. Els egipcis i els babilonis ja en tenien fa 3.800 anys, i les feien servir en molts moments de la seva vida quotidiana que anaven des del càlcul d’impostos a la construcció de temples i ciutats passant per operacions comercials. Val a dir que coneixem la matemàtica babilònica gràcies a les més de 400 tauletes d’argila que els arqueòlegs han anat trobant des de mitjans del segle XIX. Són tauletes que donen solucions funcionals a problemes concrets, amb recursos matemàtics força sofisticats com fraccions, equacions quadràtiques i cúbiques i ternes d’enters que cumpleixen el teorema de Pitàgores. És força impressionant, si pensem que estem parlant bàsicament del periode comprès entre el 1800 a.C. i el 1600 a.C.

La civilització babilònica va acabar amb la caiguda del seu imperi, l’any 539 a.C., poc després de la mort de Tales de Milet l’any 546 a.C. I alguna cosa molt gran va passar en aquelles dècades del segle VI abans de Crist, entre la joventut de Tales (cap al 600 a.C.) i la seva mort. Perquè aquells anys, de la mà de Tales i altres pensadors que han caigut en l’oblit, els grecs van descobrir l’abstracció matemàtica i van començar a crear demostracions i teoremes. Hereus del coneixement matemàtic dels babilonis i egipcis, els grecs van fer el gran salt.

De fet, cal dir que s’ha perdut tot el que va escriure Tales de Milet (que va viure aproximadament entre el 623 a.C. i el 546 a.C.). En sabem d’ell per alguns relats d’Aristòtil així com pel llibre dels Elements d’Euclides, que cita les seves troballes en el camp de la matemàtica i de la geometría. Gràcies a Euclides sabem que fa més de 2500 anys, un dels 7 savis de Grècia, Tales, va deixar de pensar en com resoldre problemes concrets i va demostrar teoremes que, a més de resoldre problemes, ajudaven a entendre les lleis amagades de l’univers.

El que va demostrar Tales de Milet és que, donat qualsevol cercle, si considerem dos punts qualsevols diametralment oposats com poden ser els C i D de la imatge de dalt, per qualsevol altre punt A del cercle, l’angle entre A-C i A-D és recte. Ho podeu veure clarament en aquesta animació de Wikimèdia. És l’anomenat teorema de Tales, que és considerat el primer teorema de la història de la humanitat. La demostració, molt elegant, la teniu a la nota al final. Tot deriva d’una cadena d’afirmacions lògiques, cada una basada en l’anterior i que comencen en ben pocs axiomes, com bé sabem gràcies a Euclides. I acaba en un resultat absolutament general i abstracte que és cert per a tot cercle, per a tota parella de punts diametralment oposats, i per a tot altre punt A. Tres “per a tot” que ens mostren la indiscutible bellesa del descobriment de Tales. Perquè, com diuen, els teoremes formen part de les poques veritats eternes que els humans anem descobrint.

El teorema de Tales és d’una elegancia indiscutible. Només pensant i a partir d’uns quants axiomes (tal com ho va formalitzar Euclides dos segles després), va descobrir una llei que relacionava els angles rectes dels quadrats i rectangles amb la uniforme perfecció dels cercles. Podem tenir dubtes de si Euclides va atribuir a Tales alguns descobriments que tal vegada no eren seus, Però el que sí és clar és que al segle VII a.C. no hi ha proves de l’existència de raonament abstracte, i en canvi quan es van escriure els Elemants al segle III a.C., l’abstracció matemàtica estava totalment consolidada. La revolució de l’abstracció va ser obra dels grecs. El pensament matemàtic abstracte, els axiomes, les demostracions i els teoremes, són regals que ens van fer els grecs, justament (i no és casualitat) mentre anaven creant la filosofía.

Per cert, la imatge de satèlit de dalt mostra les terrasses de pedra seca de Cadaqués en el punt de coordenades (42,287682, 3,26407) pel que fa a latitud i longitud.

——

Per cert, en Joseph Stiglitz parla del “green new deal” dels EEUU, i diu que si no abordem ara els reptes que presenta el canvi climàtic, la càrrega que haurà de suportar la pròxima generació serà enorme. Diu que val més deixar una herència de deutes financers, que d’alguna manera podem gestionar, que no pas enfrontar els nostres fills a un possible desastre mediambiental impossible de gestionar. I de fet, una de les coses que alguns proposen per a tenir ingressos en el “green new deal”, és la d’encongir el complex militar-industrial reduint la despesa militar en un 50%, tancant a més les bases militars dels EUA al voltant del món i creant una nova ronda d’iniciatives de desarmament nuclear.

——

NOTA: El teorema de Tales diu que en qualsevol cercle, si tenim dos punts C i D diametralment oposats, per qualsevol altre punt A de la vora del cercle es compleix que l’angle CAD amb vèrtex A és recte (utilitzo la notació clàssica pels angles, amb tres punts on el vèrtex és el punt del mig). En altres paraules, ens diu que A-C és sempre perpendicular a A-D. Tales ho va demostrar dibuixant el segment que uneix A amb B, i analitzant els triangles ABC i ABD. El primer que va constatar és que tos dos triangles són isòsceles, perquè la longitud dels tres costats A-B, B-C i B-D és idèntica i igual al radi del cercle. Per tant, l’angle ACB és igual a l’angle CAB; l’anomenaré alfa. De la mateixa manera, l’angle BAD és igual a l’angle BDA; l’anomenaré beta. Ara, imaginem que dibuixo una recta paral·lela a C-D que passi pel punt A. Marquem-hi dos punts: C’ a la banda de C, i D’ a la banda de D. L’angle C’AC és igual al ACB, i el D’AD és igual a l’angle BDA, perquè aquesta és la propietat que compleixen les parelles d’angles alterns interns, com bé ens va explicar Euclides. Ara, només cal mirar els angles al voltant de A i veure que les 5 direccions C’-A, C-A, B-A, D-A i D’-A inclouen 4 angles que han de sumar 180 graus perquè C’-A és oposada a D’-A. Per tant, 2*alfa + 2*beta = 180. I d’aquí, Tales va concloure que l’angle CAD = alfa + beta = 90. El seu resultat va ser, és i serà vàlid per qualsevol cercle i per qualsevol posició del punt A. És general, abstracte i perpetu.

L’amor etern i les matemàtiques

dijous, 1/05/2014

Pitagores1.jpg L’Eduardo Sáenz, divulgador i membre del grup de la “Big Van”, parla de les parelles que es desitgen amor etern. Diu, però, que si voleu fer-li un regal a la vostra parella que sigui per a sempre, sempre, el que heu de fer és regalar-li un teorema. Els teoremes sí que són eterns. Això sí, diu, primer l’haureu de demostrar. L’Eduardo va ser finalista del concurs FameLab de divulgació científica, i en aquest vídeo podeu veure la seva actuació durant FameLab (en aquest altre, la teniu en castellà).

És ben estrany. En aquest món en què tot canvia i tot es renova, els teoremes matemàtics són certs i immutables, no caduquen. Molta gent s’ha preguntat cóm és que passa això. Tal vegada és perquè aquests teoremes expliquen les lleis del que ens envolta i l’estructura de l’Univers. Galileo ja va dir, fa quatre segles, que les matemàtiques eren el llenguatge de les lleis de la natura. Molts d’altres, com l‘Eugene Wigner, s’han preguntat perquè les matemàtiques encerten, perquè ens expliquen el món i perquè són immutables.

Eugene Wigner definia les matemàtiques com l’art de fer operacions hàbils amb conceptes i regles que justament hem inventat amb aquest objectiu. Deia que l’important de tot plegat era la invenció constant de nous conceptes. La idea és bonica perquè deixa clar que tot plegat és una creació mental. D’altra banda, també deia que l’objectiu de les ciències és descobrir les lleis de la natura, on cal entendre el concepte de llei com a sinònim de regularitat. Però cóm s’explica que les matemàtiques, aquest art que anem inventant, expliqui tan bé els fenòmens naturals? Els conceptes matemàtics acaben connectant fenòmens que semblen totalment independents i a més, moltes vegades acaben aportant descripcions inesperadament properes i precises d’aquests mateixos fenòmens. Wigner, en un article que va escriure l’any 1960, explicava una història divertida. Dos amics, que havien estat companys d’escola, es troben al cap de bastants anys i parlen del què fan. Un d’ells és estadístic, i treballa en l’anàlisi de tendències en la població. Li ensenya un dels seus treballs a l’altre. Aquest el fulleja, i es fixa en una formula: la de la corba de Gauss. “I cóm és que pots saber coses de la població amb aquesta estranya formula? I, per cert, què és aquest símbol?” “Aquest d’aquí? Aquest és el nombre pi”, diu l’estadístic. “Què és què?” “Sí, home. És la relació entre la longitud d’una circumferència i el seu diàmetre”. “Ara sí que penso que estàs portant la broma massa lluny”, diu l’altre. “És evident que el comportament de la població no té res a veure amb les circumferències”. I de fet hem de reconèixer que la resposta de l’amic és de sentit comú. Cóm és que el nombre pi surt a la formula bàsica dels estadístics? És part de la màgia de les matemàtiques, que com dèiem, connecten aspectes de la realitat que semblen totalment independents.

Els treballs d’Eugene Wigner van aportar noves idees als estudis de filosofia de les matemàtiques i de la física. Wigner deia que la immensa utilitat de les matemàtiques en l’explicació de les lleis i regularitats de les ciències naturals és quelcom de misteriós que no té una explicació racional evident. Tal vegada té alguna cosa a veure amb el fet que qui ho pensem som nosaltres, que som part del món. Eugene Wigner deia que una qüestió interessant era la de pensar si els mètodes basats en què els humans analitzen resultats d’altres humans poden ser una base objectiva per a la observació de l’Univers que els humans poden conèixer.

Té raó l’Eduardo Sáenz. Si voleu fer-li un bon regal a la vostra parella que sigui per a sempre, sempre, el que heu de fer és regalar-li un teorema. Li estareu regalant un petit poema, escrit en el llenguatge íntim del món i la natura.

Per cert, Josep Pla deia que una de les coses més curioses d’aquest país és l’enorme quantitat de pobres que tenen la mateixa ànima que els rics, i que menyspreen els altres pobres de la mateixa manera que els rics els menyspreen a ells.