Entrades amb l'etiqueta ‘via làctia’

El dia de les ombres allargades

dijous, 27/12/2018

A Vilassar de Mar, al migdia, l’alçada màxima del Sol sobre l’horitzó és de 65 graus el dia 21 de juny, mentre que el 21 de desembre només és de 18 graus. Però si volem saber aquests valors per al lloc on vivim, només hem de conèixer el valor de la nostra latitud (a Vilassar és de 41,5 graus) i sumar-li i restar-li l’angle d’inclinació de l’eix de la Terra que com sabem és de 23,5 graus.

Al solstici d’hivern, el Sol només arriba als 18 graus d’alçada. Molt poc, oi? Fred, foscor, ombres allargades, la vida vegetal que s’atura per manca de llum solar. És el presagi de l’hivern que vindrà per acumulació de dies i setmanes en les que el Sol escalfa més l’hemisferi sud que el nord.

Però de fet, i com hem anat sabent a partir de Copèrnic, el causant dels solsticis no és el Sol, sino el nostre planeta, que té un moviment de rotació que no lliga amb la seva òrbita al voltant del Sol. La imatge (aquesta) d’aquesta pàgina web ho explica ben clar i mostra un fenomen que és menys conegut del que ens pensem: la direcció de l’eix de la Terra, en relació als estels llunyans, no canvia al llarg de l’any (el cert és que sí que canvia una mica, perquè l’eix de la Terra descriu un moviment de precessió com el d’una baldufa, que li fa completar una oscil·lació cada 25 mil anys; però en la nostra escala de temps, podem considerar-lo totalment estable i constant). I l’eix de rotació no pot canviar durant els mesos de l’any perquè les lleis de la dinàmica de Newton ho impedeixen (vegeu la nota al final).

El solstici d’hivern sol ser el 21 o el 22 de desembre, segons l’any. Ara bé, de fet i parlant correctament, el solstici no és un dia: és un instant. Hi ha qui ens explica que el solstici d’hivern es produeix quan l’eix de la Terra està inclinat de manera que el pol nord es troba totalment a la banda contrària del Sol, en relació al centre de la Terra. Però crec que és més fàcil d’entendre-ho si ens ajudem amb un pla i dues rectes. Si ho voleu explicar als nens, comenceu per agafar un full de paper, que representarà el pla de la nostra òrbita (l’anomenat pla de l’eclíptica). Marqueu el Sol al centre i dibuixeu un cercle que indicarà l’òrbita de la Terra (és el·líptica però la podem aproximar per un cercle). Ara, travesseu el paper amb un llapis A, perpendicular al paper, justament pel punt on heu marcat la posició del Sol. I, amb un altre llapis B inclinat respecte el primer que representarà l’eix de la Terra com podeu veure a la imatge d’abans, aneu recorrent l’òrbita. La Terra gira cada dia al voltant de B i una vegada cada any al voltant de A sense modificar mai la direcció del seu eix B. Imagineu ara les rectes rA i rB que allarguen els llapis A i B fins l’infinit per les seves dues bandes. Veureu que aquestes rectes rA i rB es tallen només dues vegades al llarg de l’any, en dos punts oposats de l’òrbita de la Terra, mentre que tota la resta de l’any no es toquen. Aquests dos instants màgics en els que rA i rB es tallen, són els solsticis d’estiu i hivern.

No hem de confondre els solsticis amb el periheli i afeli, punts de l’òrbita en què la Terra es troba el més propera possible del Sol i el més allunyada possible del Sol, respectivament. De fet, la Terra a l’hivern és més a prop del Sol que a l’estiu. Aquest any, el periheli serà el dia 3 de gener, 13 dies després del solstici d’hivern. Les estacions no depenen de la distància al Sol sino de la inclinació de l’eix de la Terra.

I, parlant de plans, tot plegat es torna menys antropocèntric a mesura que ens allunyem del sistema solar. Perquè el pla de l’eclíptica és bastant arbitrari. Es va anar concretant durant tot el lent procès en el qual la matèria va anar quedant atrapada per l’atracció solar, i és força coincident amb el pla de les òrbites dels altres planetes. Però és ben diferent del pla de la nostra galàxia, com podeu veure en aquest vídeo. El pla principal de la Via Làctia, aquest pla P que el Sol orbita cada 230 milions d’anys, és un altre pla de referència que ens és desconegut i llunyà, encara que no deixa de ser bonic pensar que el Sol, des de l’aparició dels dinosaures fins ara, hi ha donat justament tota una volta, passejant per P la vida que anava creixent al nostre planeta. Encara que no hi pensem gaire, som ciutadans insignificants que vivim prop del pla principal de la Via Làctia.

Tot i que, ben pensat, per què diem que la Terra, des de l’espai, es veu amb l’hemisferi nord a dalt? Veient la inclinació del pla principal de la Via Làctia respecte l’eclíptica (i pensant en l’orientació de totes les demés galàxies) és clar que hi ha infinits possibles observadors, i que la Terra “es pot veure” amb el pol nord a dalt o amb el pol nord a sota. És per això que m’agrada capgirar les boles del món dels meus amics i deixar-les com la que veieu a la imatge de dalt, de manera que Àfrica i els països del sud quedin més rellevants. La bola del món de la imatge, en una posició que correspon més o menys al solstici d’hivern i on nosaltres som quasi a sota del tot, és tan vàlida i correcta com totes les que trobareu a les botigues. Mirar-la, fa pensar.

Diuen que els humans ens tornem violents quan tenim por, però també quan veiem coses que no entenem. Perquè la ignorància, que es pot intentar abordar amb una anàlisi científica dels fets, també ens porta malauradament als mites, als dogmes, a la veritat que creiem que només tenim nosaltres, i a la violència contra “els altres”. Només cal mirar el cas d’en Giordano Bruno o el judici a Galileo Galilei. L’instint fa que tinguem ganes de destruir aquells qui qüestionen les nostres “veritats”. I de fet, els mites poden acabar generant violència mentre que en canvi, la ciència ens acosta a la pau. La ciència ens ajuda a entendre que no és que el Sol pugi a l’estiu i baixi a l’hivern, sino que simplement tot és degut a que l’eix de la Terra manté la seva direcció. Ens explica també que totes les persones tenim la mateixa dignitat i que tots som part d’un sistema ecològic que podem aprendre a cuidar, però que també podem destruir amb la nostra cobdicia i violència. I ara, després d’entendre que l’eix de la Terra es manté invariant, seria fantàstic que fóssim capaços d’entendre que l’equilibri de la vida a la Terra també s’ha de mantenir invariant…

——

Per cert, en Sebastià Alzamora parla de la violència i diu que és el comportament més primari de l’espècie humana, a més de ser un fet polític. Diu que un ésser humà, igual que qualsevol animal, pega, fereix o mata quan té por o se sent acorralat o amenaçat; però que, a diferència dels animals, l’ésser humà es torna també violent davant del que ignora: els animals esquivaran allò que no coneixen, però l’ésser humà de vegades s’hi torna i intenta destruir-ho. Diu que aquests dos paràmetres, la por i la ignorància, expliquen gairebé tots els actes de violència que saturen l’actualitat.

——

NOTA: Val a dir que l’estrany seria que la direcció de l’eix de la Terra anés canviant perquè, com bé ens va explicar Isaac Newton, els moviments de translació i rotació sempre són independents. El centre de gravetat de la Terra, que més o menys és el centre de la geoide, es mou al llarg de l’any en una òrbita el·líptica en el pla que anomenem de l’eclíptica, mentre la Terra gira cada dia al voltant del seu eix, que no canvia en absència de parells de forces exteriors.

Si voleu saber quin és l’angle (invariant) entre l’eix de la Terra i el vector normal al pla galàctic, mireu aquesta pàgina web i els seus dibuixos. L’angle és de  62,9 graus.

Gaia, els estels i nosaltres

divendres, 18/05/2018

Mireu-vos el dit índex amb el braç estès. Tanqueu primer un ull i després l’altre. Com és ben conegut, l’efecte de la paral·laxi fa que la posició del nostre dit en relació a la paret o al paisatge del fons sigui diferent en un i altre cas. La paral·laxi, aquest fenomen de canvi de posició relativa d’allò que és proper respecte el que és més llunyà, és el que va fer que l’evolució ens dissenyés amb dos ulls una mica separats per a que el cervell pogués triangular i percebre les distàncies.

La imatge d’aquí al costat ens mostra el mateix, però a escala planetària. La podeu veure a aquesta pàgina web. El fons d’estels és únic, però les quatre imatges de la lluna han estat preses (totes elles al mateix instant) des del Pol Nord (la de sota), del Pol Sud (la de dalt) i des de dos punts oposats de l’Equador (les del mig). Sabent el radi de la Terra i suposant que els estels del fons són molt més lluny, a partir d’aquesta imatge i amb una senzilla formula trigonomètrica és fàcil calcular la distància de la lluna a nosaltres.

La missió europea Gaia està fent el mateix però a escala més gran. La nau Gaia gira al voltant del Sol en una òrbita en el punt Lagrangià L2, a 1,5 milions de quilòmetres de la Terra. Un bon lloc amb un entorn de radiació baix i alta estabilitat tèrmica, que a més permet fotografiar els diferents estels de la Via Làctia des de dues posicions, en situacions oposades de l’òrbita terrestre i de la seva òrbita, separats uns 303 milions de quilòmetres. Encara que les fotos les fa en moments diferents de l’any i mentre va orbitant al voltant de la Terra, és com si Gaia tingués dos ulls separats més de 300 milions de quilòmetres. És cert que això tampoc és tan nou, i que Bessel, l’any 1838, ja va descobrir la paral·laxi basada en l’òrbita de la Terra era una bona manera de calcular la nostra distància als estels més propers. L’interessant de la nau Gaia són moltes més coses, de les quals voldria fer èmfasi en dues. El telescopi de Gaia pot mesurar les paral·laxis dels estels de magnitud entre 3 i 13 amb una precisió rècord de 6,7 milionèsimes de segon d’arc. En paraules més planeres, podria distingir una moneda d’un euro a la superfície de la Lluna. Increïble, oi? Per aconseguir-ho, li cal un grau extrem d’estabilitat i poder fer fotografies sense cap pertorbació per part de la Terra, de la seva atmosfera i del Sol. Gaia utilitza sistemes de micro-propulsió amb gas fred, molt sofisticats, per mantenir els telescopis girant a un ritme constant i garantir la precisió requerida. D’altra banda, Gaia usa informació altament redundant. Durant 5 anys ha observat més de mil milions d’estels, obtenint 70 unes fotos de cada un d’ells. Això equival a haver fotografiat una mitjana de 70 milions d’objectes cada dia, amb uns 40 GigaBytes d’informació diaris que ens va enviant. Total: 73 TeraBytes d’informació.

El resultat és un nou mapa galàctic tridimensional que conté les posicions de 1.700 milions d’estels juntament amb les posicions, moviment i característiques lumíniques de 1.300 milions d’estels de la Via Làctia. Tota la informació és a la web de la ESA. Són les dades recollides al llarg de 22 mesos de funcionament. L’actual mapa galàctic supera àmpliament, en nombre d’estels i precisió, el catàleg anterior, que només tenia dos milions d’estels. Gaia té tres metres i mig d’amplada, si no comptem el para-sol de 10 metres. El seu sensor, de tecnologia CCD com de les nostres càmeres digitals, és de mil milions de píxels amb una superfície total de 0,38 metres quadrats.

Aquí podeu veure el mapa de la ESA amb els 1.700 milions d’estels. I aquest és el vídeo d’un viatge imaginari que surt del nostre planeta i que s’allunya fins veure una bona perspectiva de tota la nostra galàxia, la Via Làctia. El vídeo mostra simultàniament les primeres dades enviades per Gaia (a l’esquerra) i les que ara tenim, molt més completes, a la dreta. El viatge comença mirant enrere cap al Sol, allunyant-se, i viatjant entre estels fins sortir de la galàxia.

Tal vegada aquest vídeo ens pugui ajudar una mica a entendre la nostra essència ínfima i efímera, a fer un somriure escèptic quan escoltem i llegim les vanes pretensions dels qui es creuen poderosos, i a exigir-los que respectin els drets i la dignitat de tots els altres, ara i aquí.

Per cert, l’Emilio Lledó diu que, estudiant la literatura grega, va descobrir que la felicitat era inicialment “tenir més”, tenir terres, cases, esclaus, àmfores, vestits. Tot això servia per assegurar la sempre fràgil i inestable existència: el “benestar” era absència d’angoixa i preocupació pel “bentenir”. Més tard, amb les paraules que van poder descobrir i descriure un univers més abstracte, el “benestar” es va transformar en “benser”, amb descripcions de l’equilibri, la sensatesa i l’alegria que surt dels territoris inescrutats del Jo. Però l’Emilio Lledó diu que el sentiment d’equilibri i assossec interior està contínuament amenaçat, i que la felicitat és impossible si la mirada descobreix la malaltia social i la corrupció que destrueix la vida col·lectiva.

La nostra caseta a Laniakea

divendres, 2/09/2016

On vivim? Tenim un codi postal, vivim en un poble o ciutat, en una ubicació que podem preguntar al GPS. Fins i tot podem usar codis fàcils de recordar de tres paraules per localitzar qualsevol trosset de tres per tres metres al nostre planeta, com podeu veure aquí.

Però els astrònoms ens diuen que això que ens sembla tan sòlid, la Terra, és un punt perdut a l’Univers. Som a un dels astres del sistema solar, i el Sol és un dels quatre-cents mil milions (!) d’estels de la nostra galàxia, la Via Làctia. El Sol, en un dels braços externs de la Via Làctia i a uns 27.000 anys llum del seu centre, gira amb tota la galàxia a una velocitat d’uns 230 quilòmetres cada segon. La nostra casa és en un punt perdut del braç d’Orió de la Via Làctia.

I ara, gràcies als darrers descobriments, encara sabem més coses. Fa just dos anys, en Brent Tully i el seu equip de la Universitat de Hawaii van publicar un article a la revista Nature en el que anunciaven el descobriment de Laniakea, l’immens grup local de galàxies on ens trobem. Laniakea és una paraula que ve del hawaià lani, paradís, i akea espaiós. Què bonic, això de lani akea, oi? I la veritat és que és realment espaiós perquè la seva mida és de 522 milions d’anys llum (que equival a 4.800 bilions de quilòmetres). Conté aproximadament cinquanta mil bilions d’estels, agrupats en més de 100.000 galàxies com la nostra, algunes d’elles agrupades en cúmuls com els de Virgo, Hidra i Centaurus. La llum que ara ens arriba des de l’altra punta de Laniakea va ser emesa quan a la Terra creixien les primeres plantes que hem trobat fossilitzades, ara fa uns 500 milions d’anys.

I què hi ha d’interessant en tot això? Doncs que, un cop més, la nostra caseta no és al centre. La nostra galàxia és als afores de Laniakea, com podeu veure a la imatge de dalt, que he obtingut d’aquesta pàgina web. Som un punt perdut, lluny del centre de tot i movent-nos a tota velocitat pel buit de l’Univers. Un dels resultats de Brent Trully i el seu equip, a més de la cartografia de Laniakea (que es basa en la llei de Hubble, vegeu la nota al final), és el descobriment que les seves galàxies es mouen cap a determinats centres d’atracció. Si entreu a la pàgina web de Brent Truly hi trobareu dos vídeos, un més de divulgació de 4 minuts i un altre més tècnic de 7 minuts que va acompanyar la publicació a Nature. Aquest darrer és impressionant perquè mostra ben clarament els punts d’atracció i les trajectòries de totes les galàxies que s’han pogut cartografiar. Laniakea és un conjunt dinàmic de galàxies que van girant, formades per una quantitat gegantina de sistemes similars al nostre sistema solar. I la cosa no acaba aquí. La nostra adreça còsmica continua després de Laniakea, perquè aquest és només un dels molts i molts grups de galàxies de l’Univers que encara hem d’acabar d’estudiar, mesurar i representar….

En Buckminster Fuller deia que trobava curiós que hi hagués gent interessada en viure l’experiència d’anar a l’espai. Explicava que la pregunta de què se sent quan hom és en una nau a l’espai té una resposta ben fàcil: és el que sentim cada dia, perquè des que naixem som passatgers de la nau espacial Terra. De fet, va escriure un llibret premonitori l’any 1968, titulat “Operating Manual For Spaceship Earth” on deia que el nostre planeta és una ínfima nau espacial que va volant per l’Univers i que té una quantitat limitada de recursos naturals i energètics. La seva proposta, absolutament actual, era una visió per a la planificació planetària integral que hauria d’incloure noves estratègies destinades a permetre a tota la humanitat a viure amb llibertat, comoditat i dignitat, sense impactar negativament en els ecosistemes de la terra i en la seva capacitat regenerativa. Fuller insistia en que la tecnologia i el saber fer ja hi era. Som nosaltres els que hem de decidir si la volem aplicar amb objectius solidaris i sostenibles, o no.

Per cert, en Josep Carner deia que el món, en meravelles i jocs atrafegat, és petit i vermell i fresc com les maduixes.

———

NOTA: Com ha estat possible fer un mapa 3D de Laniakea si quan mirem el cel de nit només ho veiem en dues dimensions, sense saber el lluny que és cada estel? Doncs gràcies a la llei de Hubble. Aquesta llei, enunciada per Edwin Hubble l’any 1929 després d’una primera versió que Georges Lemaître havia publicat dos anys abans, diu que en els estels que es troben a una distància d’entre 10 i alguns centenars de megaparsecs (que són les dimensions de Laniakea), la velocitat V a que s’allunyen de la Terra és proporcional al desplaçament de les línies espectrals (efecte Doppler), i que a més la seva distància a la Terra és aproximadament proporcional a aquesta velocitat V. Per tant, tenir una idea aproximada de la distància a que es troben els estels i les galàxies és ben fàcil. Només cal fer una anàlisi espectral de la llum que en rebem, mesurar el desplaçament de les línies espectrals en relació a les de l’espectre de la llum solar, i ja tenim una mesura de la seva velocitat d’allunyament i de la distància a que es troben.

Per què el cel de nit és negre?

dimecres, 6/04/2016

Tal vegada us ho heu preguntat alguna vegada. Wilhelm Olbers ho va fer fa quasi 200 anys, i va formular la paradoxa que ara porta el seu nom. S’ho va plantejar mogut pel seu esperit inquiet, que el portava a voler entendre el per què de les coses que tothom trobava naturals. La seva paradoxa era aquesta: com és que el cel de nit és negre si hi ha milers de milions de galàxies, cada una amb milers de milions d’estels que envien fotons a l’espai des de fa milers de milions d’anys?

Fa només quatre anys, Alberto Domínguez i Joel Primack ens van explicar la clau del misteri. Simplement, la pregunta no està ben formulada, perquè el cel de nit no és negre. Els dos autors ens ho diuen en llenguatge planer i junt amb Trudy Bell, en aquest article de la revista Scientific American. Alberto Domínguez i Joel Primack van descobrir una dèbil llum extragalàctica de fons (EBL) i la van poder quantificar per primera vegada. Van veure que l’Univers és ple d’un “gas de fotons” enrarit, amb fotons de totes les freqüències i que viatgen per l’espai extragalàctic en totes direccions (vegeu la nota al final).

Mireu la imatge de dalt. És una composició d’imatges de la Via Làctia, feta per l’observatori Europeu Austral de Paranà, al desert d’Atacama. En aquesta web teniu la foto completa, interactiva, que podeu inspeccionar i ampliar per veure’n els detalls. Veient la foto, diríeu que el cel de nit és negre?

De fet podríem fer-nos una altra pregunta: què és el negre? I aquí entraríem en un món inabordable, perquè els darrers cent anys, aquesta pregunta aparentment tan senzilla ha generat milers de pàgines escrites. Per Isaac Newton, el negre era l’absència de llum: el que (no) veiem en una habitació tancada i sense llum a la nit. Però només cal dir que, ara fa un segle, l’estudi de la radiació dels objectes negres va obrir la porta a tota la física quàntica. Perquè no és el mateix estudiar el color negre des d’una perspectiva física (el negre és l’absència de radiació electromagnètica) que mirar-s’ho subjectivament (el negre és quan no veiem res). Fins i tot podem pensar en les eines tecnològiques que hem dissenyat per a millorar i incrementar la nostra visió i que podríem anomenar “ulls artificials” (càmeres d’infraroig, telescopis, càmeres digitals amb temps d’exposició molt llargs). Podem dir que una habitació totalment fosca és negra si resulta que quan fem una foto amb una càmera d’infraroigs, la foto ens mostra que hi havia un got d’aigua calenta? La radiació infraroja d’aquesta aigua, trenca la negror o no? Probablement hem d’acceptar que tot el que d’alguna manera (per exemple, amb telescopis) acabem veient que no és negre, és que no ho és. Per això el cel de nit no és negre…

La imatge i la web interactiva de la Via Làctia em fan pensar en la nostra insignificança. Som agregats de biomassa que existim per una conjunció altíssimament improbable de les lleis físiques de l’Univers. I en canvi, tenim el privilegi de poder mirar i gaudir del cel de nit, de poder fer-ho conscientment, de saber explicar-ho als altres i d’adonar-nos que no és negre. Tot observant la Via Làctia, no puc entendre per què estem produint milions de refugiats que després ens neguem a acollir, i per què tenim aquest afany depredador d’uns recursos naturals que haurien d’estar a l’abast de milers de milions de persones. Per què volem ser els més rics del cementiri, quan no som res?

Per cert, la Judit Carrera diu que el poc ressò de l’atac terrorista que ha patit Lahore als mitjans europeus confirma que hi ha vides amb més valor que d’altres. Pensa que cal entendre millor un món en què l’altre és en nosaltres i en què el coneixement mutu és l’únic antídot que tenim a l’abast contra la por.

————

NOTA: Aquest gas de fotons inclou també la radiació còsmica de fons (CMB, cosmic microwave background) que és que es va generar durant el big bang i és més forta que la EBL. Les CMB i EBL són fàcilment diferenciables i separables degut a que les freqüències de la CMB són més baixes i es troben a la regió de les microones. La llum extragalàctica de fons (EBL) és en canvi dèbil i subtil perquè l’espai extragalàctic és immens si el comparem amb l’espai ocupat per les actuals galàxies o per les que en algun moment han existit, i els seus fotons s’han anat diluint per l’espai. A més, expansió de l’Univers ha causat un desplaçament de la seva freqüència cap al vermell i més enllà, de manera que en gran part ha sortit del nostre espectre visible. Dominguez, Primack i Bell expliquen que el mapa de la radiació EBL és un mapa històric de l’Univers que mostra fins i tot l’evolució de la forma de les galàxies. La radiació de les més antigues, les que habitaven l’Univers quan era jove, té un fort desplaçament cap l’infraroig amb factors que poden arribar a 1,6 i ens presenta galàxies compactes i deformes, amb estels que xocaven entre ells i que encara no havien format els braços giratoris de les actuals galàxies. Les galàxies modernes, en canvi, configuren la part visible i ultraviolada de l’EBL.

Només un detall final: habitualment, el cel de nit que veiem no és negre, però per raons molt més prosaiques. El cel de nit és gris per la nostra contaminació lumínica, que fa que ben sovint no puguem veure quasi cap estel.

Som pols d’estrelles?

dimecres, 25/12/2013

Estrelles_Stardust.jpg Carl Sagan, l’any 1973, va escriure que estem fets de pols d’estrelles. Ho deia en el llibre “La connexió còsmica”. En Jacob Berkowitz també en parla extensament en el seu recent llibre “La revolució del pols d’estrelles”. La veritat és que els descobriments científics dels darrers anys són realment sorprenents, i cada cop és més probable que el que deia en Carl Sagan fa quaranta anys pugui ser cert. Des de fa poc sabem que l’espai interestel·lar és ple de compostos orgànics i fins i tot d’aminoàcids, els elements bàsics de les proteínes. Jan Hollis, astrònom de la NASA i un dels responsables del projecte GBT Primos, diu que si enfoquem el nostre telescopi en direcció a la Via Làctia, pràcticament en qualsevol punt de l’espai enmig de les estrelles estarem observant compostos químics pre-biòtics. Les peces fonamentals que construeixen la vida es troben disseminades i en grans quantitats per tot l’espai interestel·lar de la nostra galàxia.

El gener de l’any 2000 va caure un meteorit al llac Tagish, al Canadà. Era una condrita carbonácea, d’uns quatre metres de diàmetre i que pesava unes 56 tones. Durant la caiguda es va desintegrar i vaporitzar pràcticament tot, però un 3% dels trossos van arribar a terra i van quedar repartits damunt la superfície del llac glaçat. La superfície gelada del llac va evitar que es contaminés amb compostos orgànics del nostre planeta, i els científics van poder recollir, amb la màxima cura, un bon nombre de trossets. El seu estudi ha durat quasi deu anys. Gràcies a les noves tècniques d’anàlisi en nano-escala, s’han trobat molts glòbuls orgànics dins la condrita, glòbuls que emmagatzemen àcids carboxílics hidrosolubles. En concret, aquests glòbuls contenen entre 100 i 300 parts per milió d’àcid fòrmic, a més de sucres i alguns aminoàcids. Cal dir que l’àcid fòrmic és essencial en la transformació de components de l’ADN. Els resultats de l’estudi s’han publicat a la coneguda revista Science. A més, aquests tipus de glòbuls orgànics també s’han trobat a una altra condrita carbonácea (la “Bells CM2“) i en les mostres que la nau Stardust va agafar del cometa “Wild-2“. Tot fa indicar que el gas interestel·lar previ al naixement del nostre Sol ja contenia compostos orgànics.

Aquests descobriments han estat confirmats amb les observacions del radio-telescopi Green Bank durant la darrera dècada. En el marc del projecte GBT Primos, els astrònoms d’aquest telescopi estan fent un estudi sistemàtic del nostre espai galàctic per tal de detectar les línies espectrals que demostren la presència de compostos orgànics interestel·lars, tot analitzant el rang de freqüències electromagnètiques que va dels 300 MHz als 50 GHz. Fins ara, han detectat la presència de propenal i propanal, sucres com el glicol-aldehid (CH2OHCHO), cicle-propenona (C-H2C3O), cetenimina i acetamida (CH3CONH2). I ben segur que en trobaran molts més, de compostos orgànics pre-biòtics.

És bonic quan, de tant en tant, deixem de creure que som el centre de l’Univers, ens adonem que segurament venim de les estrelles i acabem acceptant que si existim és gràcies al pols interestel·lar. Pols que van fabricar les supernoves fa molts milions d’anys i que després es va anar elaborant amb reaccions químiques lentíssimes, segurament en petits cristalls de gel perduts per l’espai. Tenim compostos químics pre-biòtics en l’espai galàctic i en els meteorits perquè hi ha estrelles que van fabricar els seus components mentre s’apagaven. Probablement som fills d’estrelles que van morir.

(També és bonic quan, de tant en tant, deixem de pensar que som el centre de l’Univers, veiem que no som perfectes, acceptem que no tot ho hem fet bé, reconeixem errors i els rectifiquem. S’ha fet ara, amb seixanta anys de retard, amb Alan Turing).

 

Per cert, Teresa Crespo ens recorda la cançó, “la mare i el fillet estan mig morts de fred, i el vell tremola”, i diu que el decret del Govern que impedeix tallar gas i llum a les famílies pobres l’ha decepcionat perquè només és un aplaçament. Diu que el fet d’haver d’abonar les factures en els mesos posteriors pràcticament invalida la utilitat de la mesura en les persones que no tenen ingressos per cobrir ara les seves necessitats mínimes.

Ulls que veuen l’invisible: Gaia

dimecres, 3/07/2013

ViaLactea.jpg Des que Galileu va usar el telescopi per descobrir els cràters de la lluna, els quatre satèl·lits més importants de Júpiter i molts altres fenòmens, hem anat construint ginys més i més sofisticats per mirar el cel i poder captar el que els nostres ulls no poden percebre: estrelles i galàxies que mai ningú abans havia vist. Si podeu jeure al terra, al camp o a la muntanya, en una nit sense lluna i lluny de la contaminació lumínica, tindreu una bona percepció del que és l’Univers. L’espai us atrau, i tal vegada tingueu la sensació que podeu arribar a “caure” cap a l’infinit. Els ulls s’adapten a la foscor, i acabareu veient moltíssimes estrelles. Bé, de fet us pot semblar que són moltíssimes, però tampoc són tantes. Podreu veure de l’ordre de mil cinc-centes estrelles (en veuríeu unes 3000 si anéssiu també a l’hemisferi sud a veure l’altra part del cel). Per tal de veure’n més, ens cal un telescopi. Els telescopis són ulls artificials per a veure l’invisible, el que és més enllà de la nostra percepció.

Segons noticies de fa pocs dies, els tècnics de Toulouse ja han acabat el muntatge del satèl·lit Gaia, de l’agència espacial europea (ESA). Ara el portaran a la Guaiana Francesa, on una nau Soyuz el propulsarà a la tardor cap la seva òrbita.

Durant cinc anys, Gaia anirà fent observacions per tal de crear un mapa de mil milions d’estrelles de la Via Làctia. De fet, Gaia no serà un satèl·lit sinó un planeta artificial, perquè girarà al voltant del Sol tot mantenint-se en el punt Lagrangià L2, un punt de la recta Sol-Terra a 1,5 milions de quilòmetres de la Terra en direcció contrària al Sol. L2 és un punt estable a l’ombra de la terra. Gaia no patirà canvis de temperatura i necessitarà molt poca energia per estabilitzar el seu moviment i rotació, ja que, de manera natural, anirà descrivint una corba de Lissajous al voltant de L2, com si anés passejant per una gran vall enmig de l’espai i del no res. Gaia és hereu del telescopi Hubble. Però com que tot evoluciona, podrà aconseguir imatges d’una resolució molt més gran (el nombre de sensors fotogràfics CCD de Gaia és de 106, front als dos sensors de Hubble), tot arribant als 938 megapíxels.

Gaia és un veritable prodigi de la ciència i la tecnologia. La seva càmera digital té una resolució de 24 microsegons d’arc, gràcies al seu sistema òptic i gràcies a que els píxels dels seus sensors CCD són de 23 x 13 mil·lèsimes de mil·límetre (micres). En d’altres paraules, amb la càmera fotogràfica digital de Gaia podríem fotografiar un pòster des de 1000 quilòmetres de distància i veure-hi fins i tot un cabell humà que hagués caigut damunt el paper (vegeu nota al final). No està malament, oi? Si no fos per les distorsions i absorcions atmosfèriques, podríem fer una foto des del cim de l’Aneto i reconèixer un cabell en un full de paper a Lisboa. A més, per tal de mesurar distàncies a les estrelles, Gaia ens proporcionarà imatges capturades amb “els seus dos ulls”, ulls que sabem posicionar en llocs molt separats per tal de reduir els errors de triangulació en el càlcul de les distàncies. El truc és comparar imatges de la mateixa regió del cel cada mig any, quan Gaia es trobarà en punts oposats de la seva trajectòria al voltant del Sol. Amb aquest mètode, tindrem fotos capturades per dos “ulls” que estaran separats 302 milions de quilòmetres i podrem mesurar les distàncies a les estrelles més properes amb una precisió inèdita, del 0,001%. Però no tot serà tan senzill. La nostra galàxia és tan gran que l’error quan calculem les distàncies a estrelles que són prop del seu centre pujarà inevitablement fins a un 20%.

La càmera fotogràfica digital de Gaia té sensors CCD, com les nostres càmeres digitals i telèfons mòbils. El sensor CCD és el substitut digital de les antigues pel·lícules fotogràfiques. És un conjunt d’elements de detecció de fotons organitzats en forma de matriu de punts de manera que puguin mesurar la quantitat de llum arribada a cadascun d’aquests punts o píxels. Els sensors CCD (les sigles CCD venen de “charge coupled device” en anglès) són un clar exemple del resultat de connectar i sumar ciència i tecnologia. La comprensió de l’efecte fotoelèctric, que com sabem va conduir al premi Nobel que Einstein va rebre l’any 1905, va ser aprofitat per Willard Boyle i George Smith, dels Laboratoris Bell, que van inventar els primers dispositius CCD l’any 1969. Willard Boyle i George Smith van rebre el premi Nobel de fisica l’any 2009, justament per l’invent dels CCD. Dos premis Nobel de física, separats més d’un segle.

L’esquema de sota, que podeu trobar a la pàgina web de Hamamatsu, explica molt clarament el funcionament dels CCD. Cada element del CCD és un detector de fotons i correspon a un dels píxels de la imatge que captarem. El CCD d’una càmera digital amb una resolució de 6 megapíxels té 6 milions d’elements sensors, disposats segons una matriu regular en files i columnes. A la imatge de l’esquema de sota, aquests elements es representen com petites galledes. Quan fem la foto i obrim l’obturador, els fotons de llum omplen més o menys cada una de les galledes. És com si plogués; en aquest cas, els gotes d’aigua representarien els fotons. En les galledes dels píxels més clars de la imatge hi plou més que en les galledes que corresponen a píxels de les zones més fosques. Però els fotons són energia, i el principi de l’efecte fotoelèctric ens diu que quan interactuen amb la matèria, desapareixen tot transferint la seva energia als electrons dels àtoms del sensor CCD. Les galledes dels píxels dels CCD no guarden aigua de la pluja perquè els fotons, a diferència de les gotes d’aigua, no es poden parar. La metamorfosi dels fotons (els fotons segueixen Kafka, avui que Google ens recorda que és el 130è aniversari del seu naixement) fa que mentre plouen fotons, les galledes recullen els electrons amb més energia que els fotons han alliberat. Finalment, quan es tanca l’obturador i ja no arriben més fotons, cal “llegir” la imatge tot apuntant-nos la quantitat d’electrons lliures que hem recollit en cada galleda per tal de saber la intensitat lumínica en cada píxel i així poder construir la imatge digital. Això és el que veiem al centre i a la part de baix de l’esquema. El procés de lectura és seqüencial, amb un mecanisme que es pot explicar molt bé amb cintes transportadores. Les cintes es mouen i vessen el contingut de totes les galledes de la primera fila en una cinta amb galledes auxiliars. Tot seguit, aquesta cinta auxiliar va vessant les seves galledes en el contenidor calibrat de mesura que veieu a sota de l’esquema. Aquest contenidor pot mesurar el contingut de les galledes una rere l’altra, abans de buidar-se i repetir tot el procés amb la següent fila de galledes del mig de l’esquema. És clar que en realitat, els moviments de les cintes són desplaçaments de registres que contenen les informacions dels píxels o galledes.

CCD_LlegirPixels.jpg

 

Nota: Una resolució de 24 microsegons d’arc entre dos píxels veïns, és increïblement elevada. Si dividim 24 microsegons (o sigui, 24 per 10 elevat a la -6 segons) per 3600 tindrem la resolució en graus, i si després la dividim per 180 i la multipliquem pel nombre pi, la tindrem en radians. Si feu el càlcul, veureu que la resolució entre dos píxels veïns dels CCD de Gaia és de 1,16 per 10 elevat a la -10 radians: 0,000000000116 radians. Utilitzant l’equació geomètrica que ens diu que l’arc és igual a l’angle pel radi quan l’angle es mesura en radians, podem veure que quan enfoquem el telescopi de Gaia a una determinada distància D, podem captar objectes d’un gruix igual al resultat de córrer la coma 10 posicions en el valor de D. Per això, amb Gaia podríem fer una foto des del cim de l’Aneto i reconèixer un cabell en un full de paper a Lisboa.