Entrades amb l'etiqueta ‘Werner Heisenberg’

Els electrons i nosaltres

dissabte, 15/12/2018

Al nostre cos tenim uns 17 grams o més d’electrons (vegeu la nota al final). Si els poguéssim posar tots junts farien un bon grapat de partícules.

Sense electrons no existiríem. Els electrons són darrera de totes les reaccions químiques i bioquímiques que conformen el nostre metabolisme i que ajuden, per exemple, a fabricar proteïnes amb la informació de l’ADN. Són també a la transmissió d’informació entre neurones del nostre cervell i a les fibres nervioses.

No fa massa, a partir dels descobriments d’ara fa dos segles (com el de la relació entre magnetisme i electricitat de Michael Faraday), vam veure que els podíem domesticar i fer que treballessin per a nosaltres. Perquè els electrons són dòcils i previsibles. Es mouen quan hi ha una diferència de potencial o quan es troben en entorns amb camps magnètics variables. Això ens ha permès fabricar motors elèctrics, rentadores, neveres, portes automàtiques, robots, ordinadors, telèfons mòbils i una infinitat d’invents quotidians que ens envolten.

L’any 1905, Einstein va formular l’efecte fotoelèctric i va descobrir la profunda relació que hi havia entre els electrons i els seus cosins, els fotons. Els fotons ens porten energia i informació a distància a la velocitat de la llum, escalfant-nos amb la llum del Sol, fent que els nostres ulls puguin rebre i processar imatges, i fent-nos arribar senyals de ràdio i televisió i fins i tot fotos i vídeos dels nostres amics. Gràcies a l’efecte fotoelèctric, els fotons activen determinats electrons del sensor CCD de la càmera del nostre mòbil i, miraculosament, podem fer fotos. Gràcies als electrons, els fotons que ens envia el Sol poden traslladar i moure grans objectes i actuar sobre la matèria, sent els combustibles, per exemple, dels trens d’alta velocitat: només els cal donar energia als electrons de determinades plaques solars que l’aniran propagant fins les catenàries que alimenten els trens. D’altra banda, els fotons de la wifi ens porten informació que podem llegir, veure, i després guardar en un llapis de memòria. Però, quan ho fem, són els electrons de una infinitat de pous de potencial qui ens guarden aquesta informació. Electrons i fotons, fotons i electrons.

L’experiment d’Albert Abraham Michelson i Edward Williams Morley l’any 1887 va ser el primer que va fer trontollar les nostres ingènues teories, en aquest cas sobre els fotons. L’experiment de de Michelson-Morley va demostrar que els fotons van sempre a la mateixa velocitat, ho miri qui ho miri. És l’experiment que va intrigar Albert Einstein fins que, 18 anys després, va acabar formulant la teoria de la relativitat i dient que si la velocitat de la llum era constant (com s’havia comprovat), tot el demés, inclòs el temps, havia de ser relatiu i no invariant. No hi ha ningú privilegiat, a l’univers. Però els fotons, això sí, sempre transmeten la seva informació i energia a velocitat constant. Una velocitat, la de la llum (c), que no es pot superar i que va resultar ser una constant de l’univers. No és possible enviar informació a una velocitat més gran que c. Per això, mai podrem saber com són ara mateix les galàxies llunyanes que veiem al cel de nit.

I els electrons? El 1913, Niels Bohr va proposar un model atòmic senzill que recorda el model planetari de Copèrnic. En ell, l’àtom és com un petit sistema solar amb el nucli al centre i un núvol d’electrons que hi donen voltes. Els electrons eren com boletes que anaven orbitant el nucli a diferents nivells d’energia. Quan baixaven a òrbites més interiors, emetien energia en forma d’un fotó. Quan captaven un fotó que arribava, agafaven la seva energia i pujaven a una òrbita més externa. Si captaven més fotons i energia, podien fins i tot lliurar-se de l’atracció del nucli i quedar lliures, creant un corrent elèctric quan la matèria era conductora.

Una de les primeres sorpreses que ens donen els electrons, però, és la seva habilitat per a ser màgics. Ara sabem que la teoria de Bohr no és certa, perquè no hi ha òrbites i mai sabem on són, els electrons. Hi són, són la causa de totes les reaccions químiques, tenen massa, però no els podem trobar. Mai podrem agrupar un grapat d’electrons. I Heisenberg ens explica que aquests electrons sembla que no existeixen sempre. Només existeixen quan algú els mira o, més ben dit, quan interaccionen amb una altra cosa. Són màgics. Es materialitzen en un lloc, amb una probabilitat calculable, quan topen contra algun cos. Els salts quàntics d’una òrbita a una altra són la seva manera de ser reals. Un electró és un conjunt de salts d’una interacció a una altra. Però quan ningú no els destorba, els electrons no són a cap lloc concret. No són enlloc. De fet, sembla que fins i tot apareixen i desapareixen a l’espai buit. Perquè l’espai buit és alguna cosa, no és pas el no-res. Ho diu el fet que l’espai sigui tridimensional en lloc de tenir, per exemple, dimensió quatre, perquè el no-res no té dimensions. I el que estem descobrint és que l’espai buit és l’escenari en el que poden créixer la geometria, les matemàtiques, la física… i els electrons, com bé diu en Carlo Rovelli citant Werner Heisenberg.

Però la darrera sorpresa d’aquests electrons que creiem tenir tan ben domesticats ens va arribar fa poc, el 2015, de la mà d’un grup de físics de la universitat de Delft (Ronald Hanson i altres; aquí teniu l’article científic que van publicar a la revista Nature). L’experiment va confirmar la hipòtesi de l’any 1964 de John Bell i ens va demostrar que els electrons i altres partícules elementals experimenten un fenomen que s’anomena “entrellaçament” que fa trontollar tot el que pensem sobre el funcionament de l’univers. Si dos electrons emeten fotons que es troben i queden entrellaçats, això fa que els dos electrons quedin també entrellaçats en el mateix instant, encara que es trobin a milions de quilòmetres de distància l’un de l’altre. I aquí apareix la màgia de l’entrellaçament, que fa que aquestes dues partícules passin a tenir una mena de telepatia subatòmica: si algú mesura una propietat d’un dels electrons (l’anomenat spin, per exemple, que té dos possibles valors) i immediatament algú altre mesura la mateixa propietat a l’altre, el valor que mesurarem al segon electró serà sempre el contrari del valor que han mesurar abans a l’altre. El segon electró, entrellaçat al primer, “sap” instantàniament com s’ha de mostrar quan se’l mesuri. La informació, entre electrons i partícules entrellaçades, es transmet a l’instant, en clara contradicció amb el que sabem que res pot anar més ràpid que la velocitat de la llum (vegeu alguns detalls de l’experiment a la nota al final). Com s’entén, això? Quin és aquest espai-temps que diu a tothom, inclosos als fotons, que no es pot superar la velocitat de la llum, a la vegada que permet que les partícules entrellaçades la superin del tot? Hi ha qui diu que quan els electrons i altres partícules s’entrellacen, es fonen i passen a ser una única partícula que es manifesta a dos llocs a la vegada. Però, com s’explica això de tenir un electró que s’ha desdoblat i materialitzat en dues posicions que poden trobar-se a anys llum de distància una de l’altre? Què és l’espai i què és el temps?

L’entrellaçament ens fa veure que certes propietats dels electrons i altres partícules no poden existir abans que les  mesurem. Diuen que l’acte de mesurar és el que realment crea aquestes propietats. I veiem que hi ha propietats que es creen a distància, instantàniament, saltant-se els principis que fins ara teníem: que res es pot transmetre a velocitat més gran que la de la llum. Els electrons entrellaçats representen el gran misteri de les parelles telepàtiques. A diferència dels seus cosins fotons, ràpids però previsibles.

La imatge de dalt l’he obtingut a partir de les d’aquesta pàgina web de Ryan Whitwam, que mostra els electrons que enllacen àtoms d’hidrogen. La imatge va ser obtinguda el 2013 amb un microscopi de força atòmica.

Les coses, i sobretot els electrons, no són tan deterministes com voldríem. Richard Feynman, a les seves lliçons de física, deia que amb els electrons i altres partícules no podem fer altra cosa que calcular probabilitats, i que hem de sospitar amb molt fonament que aquesta limitació ens acompanyarà sempre perquè és un fet essencial del món subatòmic. I Ronald Hanson reconeix que tot això de l’entrellaçament supera la nostra capacitat actual de comprensió: l’univers és definitivament estrany. I és que la natura és així, encara que no ens agradi.

——

Per cert, parlant de coses que sabem fer amb els electrons i l’electricitat, la Rosa Montero diu que el 70% de la inversió en infraestructures ferroviàries es dedica a l’alta velocitat, que només és utilitzada per un 4% de viatgers. En canvi, els trens de rodalies, regionals i de mitja distància, que transporten al 96% dels usuaris, reben menys d’un terç del pressupost. A més, la modernització d’un quilòmetre de via convencional (fins arribar a velocitats mitjanes de 165 Km/h) és 10 vegades més barata que la construcció d’un quilòmetre d’AVE.

——

NOTA: La massa en repòs d’un electró és aproximadament 9,109 * 10^(-31) Kg., que correspon a 1/1836 de la massa del protó. La massa del neutró és molt similar a la del protó, s’altra banda. Tenint en compte que el nostre cos té entre un 60 i un 65% d’aigua, i que bàsicament som hidrogen, oxigen i carboni en proporcions del 10%, 65% i 19,37% respectivament (la suma d’aquests tres elements és el 94,37% del nostre pes), és fàcil fer un càlcul aproximat del pes total dels electrons que ens conformen. Com que el pes atòmic de l’hidrogen és 1, la proporció d’electrons deguda als àtoms d’hidrogen és de 0.1 / 1836, o sigui, 5.45 * 10^(-5). El mateix càlcul amb l’oxigen dona dona una proporció en pes d’electrons de (0.65 * 8/15.999) / 1836 = 1.77 * 10^(-4), atès que el seu pes atòmic és de 15,999. I si ho fem amb el carboni, el resultat és (0.1937 * 6/12) / 1836 = 0.53 * 10^(-4). Sumant les tres proporcions, veiem que per cada 10 quilos del nostre pes, tenim 2,845 grams d’electrons que provenen d’àtoms d’hidrogen, oxigen i carboni. Val a dir que el total és una mica més gran, perquè caldria sumar-hi els electrons dels elements més complexes que també configuren les molècules de la resta del nostres cos (molècules que en total suposen 563 grams per cada 10 Kg. de pes).

L’experiment de Ronald Hanson i els del seu grup va demostrar que, en l’entrellaçament, no hi ha variables ocultes (no hi ha fenòmens que ara no puguem detectar però que tal vegada en el futur podríem arribar a mesurar), i que, per tant, l’entrellaçament és una propietat real que tenen els electrons, els fotons, i altres partícules. L’experiment, màgic i sorprenent, va ser aquest: a dos laboratoris A i B separats 1280 metres a Delft, els científics van experimentar amb electrons que havien quedat atrapats prop d’alguns àtoms de nitrogen que hi havia, a tall d’impuresa, en dos diamants (un a A i l’altre a B). Amb impulsos de làser, anaven activant reiteradament els electrons de manera que, tant l’electró del diamant de A com el del diamant de B emetien un fotó cada un d’ells a cada impuls làser. Els fotons es dirigien a un tercer laboratori C entre A i B, on algunes vegades es trobaven en un mirall semitransparent i quedaven entrellaçats. Llavors es produïa un fenomen sorprenent, que és l’anomenat “intercanvi d’entrellaçament”: de manera immediata, quan els dos fotons s’entrellaçaven a C, els seus dos emissors, els electrons als diamants de A i B, quedaven també entrellaçats. És com si, quan uns joves formen parella, els seus pares quedessin automàticament aparellats entre sogres. Tot seguit, es mesurava l’spin de l’electró de A i també es mesurava l’spin corresponent de l’electró de B. Com que no hi havia cap possibilitat de transmetre informació entre A, B i C (es tractava de demostrar que l’entrellaçament es transmet de manera instantània), el que es va fer és usar tres rellotges atòmics d’alta precisió, un a cada lloc, i guardar localment a tres ordinadors a A, B i C, el temps i el resultat de cada experiment. Si a A i B es guarda el moment de l’emissió de cada fotó, els instants de temps en que es fan les mesures i els valors dels spin que s’han mesurat, i a C es guarda els instants de temps en els que s’ha pogut aconseguir un entrellaçament exitós de fotons, es pot fer una anàlisi a posteriori i només considerar vàlids els cassos en que hi ha hagut entrellaçament de fotons a C i en els que les mesures d’spin als corresponents electrons a A i B s’han fet amb una diferència de temps de menys de 4,27 microsegons (el temps que la llum tarda en recórrer els 1280 metres). D’aquesta manera ens assegurem que la mesura feta a A no ha pogut arribar a B i que la mesura que hem fet a B no s’ha pogut transmetre a A. En tot cas, cal dir que l’experiment és una mica més complicat perquè els spins dels electrons es poden mesurar en diferents eixos i perquè cal garantir la màxima neutralitat durant el càlcul de les correlacions (veure l’article).

Ciència i antílops

dimecres, 11/05/2016

Pocs llibres de física acaben sent un best-seller, i el darrer llibre d’en Carlo Rovelli ho ha estat. A Itàlia se’n han venut més de 400.000 exemplars, i ara es traduirà a 34 idiomes. Per sort, ja en tenim una versió en català, que us recomano. Crec que l’èxit és degut a l’entusiasme de Rovelli i a la claredat del que diu, però també a que ens sap transmetre que quan parlem de física parlem també de nosaltres mateixos (en paraules seves). En Carlo Rovelli ens ho sap explicar, de la mateixa manera que ens deixa compartir la bellesa de les construccions científiques. La imatge d’aquí al costat, que he tret d’aquest vídeo d’una de les seves conferències, mostra els homes que cerquen, entre la pols de la sabana, el rastre d’un antílop. Rovelli ho comenta com una de les primeres mostres de l’actitud científica humana, basada en escrutar els detalls de la realitat per deduir-ne el que no veiem directament, però del qual podem seguir el rastre.

Nosaltres no veiem mai el temps, només veiem fenòmens, diu. Però això no lliga amb la nostra experiència: tots sabem que en els fenòmens més quotidians, el temps compta. Rovelli explica que el temps és un fenomen com la temperatura o la transició de líquid a gas: Els àtoms individuals no són sòlids o líquids, càlids o freds, però quan hi ha molts àtoms junts es formen “objectes” macroscòpics, que tenen certes propietats en el seu conjunt. I el que passa és que aquestes variables macroscòpiques sí que inclouen la noció del temps.

Rovelli explica també que el nostre cos és física i que per tant som física. Diu que de vegades pensem en nosaltres com una cosa a part de la natura, com si fóssim una cosa artificial, i que no és així, perquè també som part integrant del món que veiem, no som observadors externs. Explica que estem fets exactament dels mateixos àtoms i dels mateixos senyals de llum que també s’intercanvien els pins de les muntanyes i els estels de les galàxies, que el nostre ADN és ple de física, i que el nostre cervell també. A mesura que el nostre coneixement ha augmentat, hem après cada cop més que formem part, una petita part, de l’Univers. Hi estem ficats, i la perspectiva que en tenim és des de l’interior. El color dels arbres i de les flors és molt més del que veiem, i és bo ser-ne conscients: mai podrem copsar la totalitat de qualsevol fenomen natural. Veiem rastres, a partir d’aquests rastres fem interpretacions, i acabem descobrint relacions entre diferents fenòmens. La ciència és una mirada cap a la realitat, una mica menys velada que la que obtenim de la nostra ofuscada banalitat quotidiana. Una realitat que, com diu Rovelli,  sembla feta de la matèria de què estan fets els nostres somnis, i que tanmateix és més real que el nostre emboirat somni quotidià.

La historia de la ciència dels dos darrers segles és la historia de com les respostes es converteixen en preguntes i de com les certeses es tornen dubtes. Fa només 200 anys, Pierre Simon de Laplace creia que la ciència ho podria arribar a explicar tot. Laplace deia que una intel·ligència que, en un moment donat, conegués totes les forces i la situació respectiva dels éssers de què es compon la natura, tindria tant el futur com el passat davant els seus ulls. I pensava que això podria arribar a passar. La ciència de Laplace era la de les certeses i respostes. Però el segle XX ens va obrir els ulls i vam entendre que mai ho sabríem tot. L’any 1908, Poincaré ja va dir que les prediccions a llarg termini són impossibles perquè la situació actual només la podem conèixer aproximadament. Després, l’any 1963 Edward Lorenz ho va aplicar a la meteorologia i va posar la primera pedra de la teoria del caos. En poques paraules, ara sabem que la previsió del futur suficientment distant és absolutament impossible. Encara que molts no ho pensin així, la ciència actual té moltes més preguntes i dubtes que respostes.

En Carlo Rovelli parla també de dues activitats humanes ancestrals: la creació de relats i el seguiment de rastres. Diu que els relats lliures i fantàstics que els homes s’han explicat, de nit, a la vora del foc, durant centenars de mil·lennis, s’han complementat sempre amb la mirada d’aquests mateixos homes, a les primeres llums de l’alba, que busquen entre la pols de la sabana el rastre dels antílops. Rovelli creu que la confusió entre aquestes dues activitats humanes diferents, inventar relats i seguir rastres per trobar una presa, és l’origen de la incomprensió i de la desconfiança envers la ciència d’una part de la cultura contemporània. Diu que la separació és molt fina, perquè l’antílop caçat a trenc d’alba no s’allunya gaire del déu antílop dels relats del capvespre. El límit és relliscós, perquè els mites s’alimenten de la ciència i la ciència s’alimenta de mites. Però queda el valor cognoscitiu del saber i la seva aplicació tecnològica: Si trobem l’antílop, podrem menjar.

Sabem ben poca cosa, però és increïble el profit que hem tret del poc que em pogut arribar a entendre. Els propers anys disposarem de tecnologies per a la generació d’energia verda i sostenible, d’eines informàtiques basades en internet que podran ser la base dels nous sistemes democràtics i de comunicació del segle XXI, de sistemes tecnològics que podrem emprar per a reduir les desigualtats i garantir els drets humans, i de noves eines (basades per exemple en internet i realitat virtual) per a la solució pactada i negociada dels conflictes. Les utilitzarem amb aquests objectius?

———
Per cert, en Bru Rovira diu que veu remarcable el fet que els polítics europeus partidaris del tancament de fronteres i de la filferrada de punxes, siguin els mateixos que negocien en secret el tractat de lliure comerç amb els Estats Units

El color negre, els gerros i la física quàntica

dimecres, 23/04/2014

Gerro_ForatNegre1.jpg El problema de la física quàntica és que no és gens intuïtiva. Sempre recordaré una anècdota d’ara fa quaranta anys, quan jo era estudiant de físiques a la UB mentre feia de professor a la UPC. Va ser a classe de mecànica quàntica. Recordo el professor, omplint la pissarra de formules i més formules. Era tota una cadena de raonaments, de petits passos que ens portaven de cada formula a l’esglaó de la següent. En acabar l’hora de classe, va requadrar la darrera equació i va dir: “i això és un àtom d’hidrogen”. Em vaig quedar perplex. Jo havia anat seguint un a un els passos de la demostració, però al final no vaig entendre res. Vaig descobrir que entendre els arbres individualment no ajudava pas a entendre el bosc. De fet, la meva idea d’un àtom d’hidrogen era (i és) una altra cosa ben diferent…

Ludwig Boltzmann, pels voltants de 1870, va re-escriure la termodinàmica en base a la hipòtesi que la matèria és un conjunt d’àtoms, tot utilitzant l’estadística i la llei dels grans nombres. La transmissió de la calor, les lleis de la termodinàmica i el concepte d’entropia van quedar definitivament explicats. La matèria era discreta, no era un gran magma continu. Boltzmann va veure que la interacció constant entre milions i milions de molècules és que el fa que molts fenòmens físics siguin irreversibles. Va entendre que la matèria era discreta i va poder explicar les lleis de la termodinàmica. Però, què és la llum? Què són els colors? Què és el color negre?

La història de la física quàntica ve de lluny. I ve dels molts experiments que es van fer per entendre el significat del color negre. Isaac Newton, l’any 1671, a la seva teoria dels colors, va dir que la llum és color i que la llum blanca conté tots els colors. En contra, i segons Newton, el negre és l’absència de color i de llum. A la nit, tot és negre perquè no hi ha llum. Però per a poder entendre les propietats del color negre, calia fer experiments i disposar d’objectes negres. Otto Lummer i Wilhelm Wien, l’any 1895, van fer una proposta ben senzilla (ja suggerida abans per Kirchoff i Boltzmann). Van proposar que el cos negre ideal fos una cavitat amb un forat. La idea és senzilla. Imagineu qualsevol objecte amb una cavitat suficientment gran i amb un petit forat. El forat es veu negre perquè la poca llum que hi entra acaba essent absorbida per les parets i no torna a sortir. Com que no surt llum, es veu negre, segons la teoria de Newton. És el que podeu veure en el gerro de la foto. El forat del broc és negre. Els físics de finals del segle XIX van fabricar-se recipients de ceràmica amb petits forats negres i van començar a experimentar. I aquí van començar les contradiccions i els problemes. William Herschel va veure que no tots els colors negres eren iguals. Com tot a la vida, tots els negres són iguals, però alguns són més iguals que d’altres. Poseu un termòmetre a mig metre del forat d’un gerro. El termòmetre marcarà la temperatura ambient. Escalfeu ara el gerro posant-lo uns minuts al foc i repetiu l’experiment. El forat és negre com abans, però ara aquest color negre té energia, i el termòmetre puja. Tenim un broc negre que irradia energia. William Herschel va fer un altre experiment, que fàcilment podeu repetir. En una habitació fosca i amb un prisma, va repetir el muntatge de Newton i va descompondre la llum blanca del Sol que entrava per una escletxa de la finestra, projectant els colors de l’arc de Sant Martí a la pared oposada. Va situar un termòmetre en diferents punts, i va veure que no tots els colors de l’espectre escalfaven igual. El termòmetre marcava més temperatura en la zona del vermell que en la del blau. Però el més sorprenent és que a la zona sense llum, la zona negre de més enllà del vermell, el termòmetre encara pujava més. Va descobrir que hi ha colors negres que són més calents que els vermells i que els taronges.

Tot plegat era un embolic. De fet, William Thomson (Lord Kelvin) va donar una conferència l’abril de 1900 sobre els problemes relacionats amb l’èter i amb els cossos negres. Va dir que tots dos eren “núvols”, punts foscos en les teories físiques de la llum i del color, aspectes incomprensibles de la física.

Aviat es va veure que la radiació que surt pels petits forats dels gerros calents i dels forns en equilibri tèrmic es regeix per un espectre de radiació universal que no depèn ni del material de les seves parets ni de la seva forma interna. Només depèn de la temperatura. Es van fer molts experiments i es van poder dibuixar amb precisió les corbes de radiació dels cossos negres. Fixeu-vos en les gràfiques. Nosaltres ho veiem negre perquè, si la temperatura no és massa alta, la radiació és infraroja i cau fora de l’espectre visible. Hi ha radiació però no la veiem. Quan augmentem la temperatura del forn, sí que la corba entra dins l’espectre visible, i el forat es comença a veure vermellós. Per temperatures del forn molt més elevades, la radiació va entrant a la zona dels ultraviolats. Wilhelm Wien va deduir experimentalment una primera formula, anomenada llei de desplaçament o llei exponencial de Wien, per a explicar aquestes gràfiques de radiació dels cossos negres. Va dir que, donada una temperatura T del forn en graus Kelvin, l’energia irradiada a una determinada freqüència de llum f havia de ser proporcional al cub de f i a una funció del quocient f/T. Per tant, si volem tenir radiació a una freqüència més alta (blaus i ultraviolats), hem de fer que T sigui més gran.

Tot va canviar radicalment en només cinc anys. Després de la conferència de Lord Kelvin l’abril de 1900, Max Planck va trobar la formula que explicava les corbes experimentals de radiació dels cossos negres. La va presentar, exhaurint el final del segle XIX, en una ponència a la Societat de Física de Berlín el dia 14 de desembre de 1900 (vegeu nota al final). Havia trobat una funció tal que, en donar valors numèrics a la freqüència f de la llum i a la temperatura T, dibuixava les mateixes corbes que les que s’havien trobat als Laboratoris. El seu mètode va ser molt enginyós, però amb resultats que van sorprendre i desconcertar fins i tot el propi autor. Planck va “trossejar” l’energia de les parets del forn en petits paquets, i va tenir la bona idea de fer-ho amb paquets d’energia proporcional a la freqüència, E=h*f on h era la constant de proporcionalitat (vegeu nota al final). Imagineu que teniu una foto aèria d’una determinada regió desprès d’un incendi forestal, i que voleu calcular el percentatge de superfície cremada. El que va fer Planck és similar a dividir la foto en una quadrícula i mirar quants quadrets són de zona cremada i quants no. El percentatge de zona cremada és aproximadament el nombre de quadrets de zona cremada respecte al total. La idea de Planck va ser fer cada cop més petita la mida de la quadricula (que en el seu cas era justament el valor de la constant de proporcionalitat h) i trobar, en el limit, la formula desitjada. Però el limit no va funcionar. L’aproximació de les corbes experimentals millorava quan baixava la mida de la quadrícula (h) però a partir d’un cert valor, empitjorava. La mida h de la quadrícula tenia un valor òptim, i això implicava que els generadors d’energia de les parets del forn no eren continus sinó discrets, i que la seva mida era h. La física quàntica va començar l’octubre de 1900, quan Max Planck va trobar l’equació matemàtica de les corbes experimentals de radiació dels cossos negres i va calcular l’ara anomenada constant de Planck, h. La formula de Planck només coincidia amb les gràfiques experimentals quan la “mida de la quadrícula” era la constant de Planck, i en canvi no hi coincidia si s’utilitzava una mida més gran o més petita.

Cinc anys després, el 1905, Albert Einstein va anomenar quants als paquets d’energia E=h*f. Einstein va explicar que l’energia d’un cos ponderable no es pot subdividir en un nombre arbitrari de parts arbitràriament petites, i que la segmentació és consubstancial a la radiació. Els quants es van batejar amb el nom de fotons: farcellets limitats d’ones i a la vegada partícules. Com a conseqüència, Einstein va poder explicar la interacció fotons – electrons i l’efecte fotoelèctric en un treball que li va valdre el Premi Nobel. Però Planck es va sentir sempre incòmode amb els seus descobriments, era un conservador que creia en el continu i no en el discret. Planck es va oposar a Einstein perquè opinava que l’energia no era discreta. Opinava que el significat dels quants E=h*f era limitat i que només havia de servir per a les deduccions. Dèia que “la introducció dels quants s’ha de fer amb l’ànim més conservador possible, i només en els casos que demostrin per sí mateixos ser absolutament necessaris”. Planck va descobrir la fisica quàntica malgrat seu. L’any 1931 recordava: “el que vaig trobar va ser un acte de desesperació, ja que sóc pacífic per naturalesa i rebutjo qualsevol aventura dubtosa”.

A la física, tot es va capgirar en cinquanta anys. Pels voltants de 1870, poca gent pensava que la matèria fos discreta i ningú defensava que l’energia ho fos. Al 1920, els físics havien entès i comprovat que la matèria són àtoms i partícules i que l’energia radiant és una munió de fotons. Tot el petit és discret, a l’Univers. Poc després, l’any 1927, Heisenberg va demostrar a més que el món de les partícules i dels fotons és un món que mai coneixerem del tot, perquè és impossible mesurar amb precisió la seva posició i la seva velocitat en un instant determinat. El petit és discret i a més, és una mica secret. Heisenberg deia, en relació a la coneguda frase de Laplace: “si coneixem el present podem predir el futur”, que el que és fals en ella no és la conclusió, “sinó la premissa”. Mai podrem conèixer bé el present. El principi d’indeterminació de Heisenberg va fer caure la ciència dels núvols. La ciència mai ho podrà conèixer tot. Paral·lelament amb Heisenberg, la solució va venir de la mà de l’estadística. Si no podem predir ni el futur ni el moviment de les partícules i dels electrons, el que sí podem fer és calcular cóm evoluciona al llarg del temps la probabilitat de tenir aquestes partícules i electrons en determinats punts de l’espai. Si no podem saber on són, al menys podem saber on és probable que siguin. Schroedinger, l’any 1926, va proposar la coneguda equació d’ona, que descriu la probabilitat de trobar un electró en un punt determinat al voltant del nucli de l’àtom. L’equació d’ona que em van mostrar fa quaranta anys explica tot el que podem saber sobre on trobarem l’electró quàntic de l’àtom d’hidrogen, i ho explica amb un raonament basat en l’observació dels brocs negres dels gerros i forns.

Per cert, George Orwell, al final de “Homenatge a Catalunya” diu: “vigili el lector amb el meu partidisme i amb la inevitable distorsió deguda a que he vist els fets des d’un costat. I tingui també la mateixa cura quan llegeixi altres llibres sobre la guerra civil Espanyola”.

_______________________________________

Nota: Max Planck va convertir el problema continu en un de discret, mètode que ja havia fet servir Arquimedes per a calcular volums de cons i esferes i que van formalitzar Newton i Leibnitz en el seu càlcul infinitesimal. Va postular que la cavitat de forn tenia molts oscil·ladors, i que cada cada un d’ells radiava en una freqüència f amb una energia que era proporcional a la freqüència i que va discretitzar com E=h*f. La seva idea era fer h cada cop més petita i trobar, en el limit, la formula desitjada. Però el limit no va funcionar. La seva formula concordava amb els resultats experimentals quan el valor de la constant h era de h=6,62 per 10 a la -34 Joules per segon. Si en canvi baixava més el valor de h i arribava al limit, l’energia es feia infinita en la zona de l’ultraviolat, cosa que evidentment era falsa i que no concordava amb els resultats experimentals.

La llei de radiació dels cossos negres de Max Planck diu que la densitat d’energia d’un forn a temperatura T (en graus Kelvin) i a la freqüència f (valor que correspon a les ordenades de la gràfica experimental) és C*f*f*f/(exp(a*f/T) – 1), on exp és la funció exponencial, la constant C és 8 vegades el valor 3.14159.. de pi per la constant de Planck h i dividit pel cub de la velocitat de la llum, i la constant a és a=h/k on h és la constant de Planck i k és la constant de Boltzmann, la constant de la formula de l’entropia que podeu veure aquí, gravada a la seva tomba.